
Progressive metering devices of the series VP, VPK, VPB

Component Lifecycle Manual

(CLM)

951-230-008-EN Version 04

Masthead

Manufacturer

SKF Lubrication Systems Germany GmbH

Address of manufacturer plants Headquarters <u>Walldorf Plant</u> Heinrich-Hertz-Str. 2-8 69190 Walldorf Germany Tel.: +49 (0) 6227 33-0 Fax: +49 (0) 6227 33-259

Berlin Plant Motzener Straße 35/37 12277 Berlin Germany Tel. +49 (0)30 72002-0 Fax +49 (0)30 72002-111

Hockenheim Plant 2. Industriestraße 4 68766 Hockenheim Germany Tel. +49 (0)62 05 27-0 Fax +49 (0)62 05 27-101 E-mail: Lubrication-germany@skf.com www.skf.com/lubrication

Training

SKF conducts detailed training in order to enable the maximum safety and efficiency. SKF recommends taking advantage of this training. For information, contact the relevant SKF service address.

Copyright

© Copyright SKF

All rights reserved.

Warranty

The instructions do not contain any information on the warranty. This can be found in our General Terms and Conditions.

Disclaimer of liability

The manufacturer shall not be held liable for damage resulting from:

- Improper usage, assembly, operation, configuration, maintenance, repair, or accidents
- Improper reaction to malfunctions
- Unauthorized modifications to the product
- Intentional or gross negligence
- Use of non-original SKF spare components

The maximum liability for loss or damage resulting from the use of our products is limited to the purchase price. Liability for indirect damage of any kind is excluded.

Masthead

Table of contents

Explanation of symbols and signs

6

LAPialia	cion or symbols and signs	0	
1. Safety instructions			
1.1	General safety instructions	8	
1.2	General behavior when handling		
	the product	8	
1.3	Intended use	9	
1.4	Foreseeable misuse	10	
1.5	Painting plastic components	10	
1.6	Modifications to the product	10	
1.7	Prohibition of certain activities	10	
1.8	Inspections prior to delivery	10	
1.9	Referenced documents	11	
1.10	Note on the type plate	11	
1.11	Note on Pressure Equipment Directive 2014/68/EU	11	
1.12	Persons authorized to use the product	11	
1.12.1	Operator	11	
1.12.2	Qualified mechanic	12	
1.12.3	Qualified electrician	12	
1.13	Instruction of outside fitters	12	
1.14	Provision of personal protective gear	12	
1.15	Operation	12	
1.16	Emergency shutdown	12	
1.17	Transport, assembly, maintenance, malfunction, repair, shutdown, disposal	12	
1.18	First start-up, daily startup	14	

1.19	Cleaning	14
1.20	Residual risks	15
2. Lubri		16
2.1	General information	16
2.2	Selection of lubricants	16
2.3	Material compatibility	17
2.4	Aging of lubricants	17
3.	Overview/functional description	18
3.1	Overview of progressive metering devices	18
3.2	Information on volume data	18
3.3	Overview of a general progressive system	20
3.3.1	Functional description of a general progressive system	21
3.4	Overview of VP progressive metering device series	22
3.4.1	Functioning of a VP progressive metering device	24
3.5	Overview of VPK progressive metering device series	26
3.5.1	Functioning of a VPK progressive metering device	28

÷	3.6	Overview of VPB progressive metering device series	30
b	3.6.1	Functioning of a VPB progressive metering device	32
	3.7	Design and functional description of piston detectors	33
7 7	3.7.1	Piston detector design	33
	4.	Technical data	34
3	4.1.	Volume data for VP progressive metering device sections	34
3	4.1.1	Basic design of VP progressive metering device	34
)	4.1.2	VP progressive metering device with piston detector	35
L	4.1.3	VPG progressive metering device with 2/2 directional solenoid valve	35
2	4.1.4	VPG progressive metering device with 2/2 directional solenoid valve	י 36
ł	4.1.5	VPG progressive metering device with 4/2 or 3/2 directional solenoid valve for oil,	36
ò	4.1.6	VP progressive metering device with flow limiter	37
3	4.2.	Volume data for VPK progressive metering device sections	38

4.2.1	Basic design of VPK progressive metering device	38
4.2.2	VPK progressive metering device with piston detector	39
4.2.3	VPK progressive metering device with proximity switch	39
4.2.4	VPKG progressive metering device with 2/2 directional solenoid valve	40
4.2.5	VPKG progressive metering device with 2/2 directional solenoid valve	40
4.2.6	VPK progressive metering device with 4/2 and 3/2 directional solenoid valve	41
4.3.	VPB volume data for progressive metering device outlets	42
4.3.1	Basic design of VPB progressive metering device	42
4.3.2	VPB progressive metering device with piston detector	43
4.2.3	VPB progressive metering device with proximity switch	43
4.3.3	VPB progressive metering device with 2/2 directional solenoid valve	43
4.4 Pisto	on detectors	44
5.	Delivery, returns, and storage	46
5.1 5.2	Lubrication units General notes	46 46

6.	Assembly	47
6.1	General information	
6.2	Installation information	47
6.2.1	Minimum mounting dimensions	48
6.3	VP port dimensions, assembly holes,	
	and minimum mounting dimensions	49
6.3.1	VP in basic design	49
6.3.2	VP tightening torques	50
6.3.3	VP with piston detector	51
6.3.4	VP progressive metering device with cycle switch	51
6.3.5	VP progressive metering device with flow limiter	52
6.3.6	VPG progressive metering device with 2/2 directional solenoid valve	53
6.3.7	VP progressive metering device with $4/2 \mbox{ or } 3/2$ directional solenoid value	53
6.3.8	VP progressive metering device with 2/2 directional solenoid valve	54
6.3.9	Assembly of the VP progressive metering device	55
6.3.10	Changing VP progressive metering device sections	56
6.3.11	Connecting outlets on the VPM	58
6.4	VPK in basic design	60
6.4.1	VPK tightening torques	61

6.4.2	VPK with piston detector	62	
6.4.3	VPK progressive metering device with cycle switch		
6.4.4	VPK progressive metering device with proximity switch		
6.4.5	VPKG progressive metering device with 2/2 directional solenoid valve	63	
6.4.6	VPK progressive metering device with 4/2 or 3/2 directional solenoid valve	64	
6.4.7	VPK progressive metering device with 2/2 directional solenoid valve	י 65	
6.4.8	Assembly of the VPK progressive metering device	66	
6.4.9	Changing VPK progressive metering device sections	67	
6.4.10	Consolidation of multiple outlets (crossporting)	69	
6.5	VPB in basic design	73	
6.5.1	VPB tightening torques	74	
6.5.2	VPB with piston detector	75	
6.5.3	VPB progressive metering device with cycle switch	75	
6.5.4	VPB progressive metering device with 2/2 directional solenoid valve	76	

6.5.6	Consolidation of opposite outlets	78	10.	Maintenance	91
6.5.7	Consolidation of multiple outlets		10.1	General information	91
	(crossporting)	78			
6.6	Lubrication line connection	80	11.	Malfunctions, causes, and remedies	92
6.6.1	Mounting process	82	11.1	Prior to beginning troubleshooting	92
6.9	Lubrication line arrangement	84	11.2	Progressive metering device and	
6.10	Electrical connection	85		system malfunctions	93
6.10.1	Connecting the inductive	85	12.	Repairs	96
6.10.2	Connecting directional solenoid valves	85	12.1	Replacing inductive NAMUR sensor	96
			13.	Shutdown and disposal	97
7.	First start-up	86	13.1	Temporary shutdown	97
7.1	Venting a grease progressive system	86	13.2	Shutdown and disposal	97
7.2	Venting an oil progressive system	87			
7.3	Inspections before first start-up	88	14.	Spare parts	98
7.4	Inspections during first start-up	88	14.1	Spare parts – VPG	98
			14.2	Spare parts – VPK	107
8. Oper	ation	89	14.3	Spare parts – VPB	114
9. Clear	ning	89	15.	Accessories	117
9.1	Cleaning agents	89	15.1	VPB bridge designs (crossporting)	117
9.2	Exterior cleaning	90	15.2	VPB check valves	118
9.3	Interior cleaning	90	15.3	Cable sockets	119
9.4	Cleaning the NAMUR sensor	90			

Explanation of symbols and signs

You will find these symbols, which warn of specific dangers to persons, material assets, or the environment, next to all safety instructions in these operating instructions. Please heed these instructions and proceed with special care in such cases. "Please forward all safety instructions to other users."

Warning level		Consequence	Probability
	DANGER	Death / serious injury	Immediate
	WARNING	Death / serious injury	Possible
		Minor injury	Possible
	IMPORTANT NOTE	Property damage	Possible

Informat	Information symbols within the text		
Symbol	Meaning		
•	Prompts an action		
0	Used for itemizing		
(P	Refers to other facts, causes, or consequences		
\rightarrow	Provides additional information within procedures		

Symbols used			
Symbol	Meaning		
	Note		
4	Electrical component hazard, electric shock hazard		
	Slipping hazard		
	Hazard from hot components Hazard from hot surface		
	Risk of being drawn into machinery		
	Crushing hazard		
	Danger from suspended load		
\land	Pressure injection hazard		
<mark>∕€x</mark>	Explosion-proof component		
	Electrostatic sensitive components		
Θ	Wear personal safety equipment (goggles)		
6	Secure (lock) the closing device against accidental starting of the machine		
	Environmentally sound disposal		

Instructions placed on a unit, machine, or equipment, such as:

O Rotation arrows

O Fluid connection labels must be followed and kept in fully legible condition.

Read the component manual thoroughly and follow the safety instructions.

	Abbreviations and conversion factors		
Abbreviations			
re approx. °C cu.in dB (A) i.e. etc. poss. °F fl.ou. fpsec gal.	regarding approximately degrees Celsius cubic inch sound pressure level that is et cetera possibly degrees Fahrenheit fluid ounce feet per second gallon	oz. psi RH s sq.in. etc. e.g. > < <u>+</u> Ø	ounce pound per square inch relative humidity second square inch et cetera for example greater than less than plus or minus diameter
if necessary	if necessary	Conversion factors	
hp usually in. incl. K kg kW l lb. max. min. min. ml mm mph N Nm	horsepower usually inch including Kelvin kilogram kilogram kilopond kilowatt liter pound maximum minimum minimum minimum minimum minimute milliliter millimeter millimeter millimeter Newton Newton meter	Length Area Volume Mass Density Force Speed Acceleration Pressure Temperature Power	1 mm 0.03937 inch 1 cm² 0.155 sq.in. 1 ml 0.0352 fl.oz. 1 l 2.11416 pints (US) 1 kg 2.205 lbs 1 g 0.03527 oz. 1 kg/cm³ 8.3454 lb./gal. (US) 1 kg/cm³ 0.03613 lb./cu.in. 1 N 0.10197 kp 1 m/s 3.28084 fpsec. 1 m/s² 3.28084 ft./s² 1 bar 14.5 psi °C (°F-32) x 5/9 1 kW 1.34109 hp

1. Safety instructions

1.1 General safety instructions

- The operator must ensure that the instructions are read by all persons tasked with working on the product or who supervise or instruct such persons. The operator must also ensure that the staff fully understands the content of the instructions. Putting the products into operation or operating them without having read the instructions is prohibited.
- Retain the instructions for further use.
- The products described here were manufactured according to the state of the art. Risks may, however, arise from non-compliant usage and may result in personal injury or damage to material assets.
- Any malfunctions which may affect safety must be remedied immediately. In addition to these instructions, the statutory regulations for accident prevention and environmental protection must be observed.

1.2 General behavior when handling the product

- The product may only be used in awareness of the potential dangers, in proper technical condition, and according to the information in this manual.
- Familiarize yourself with the functions and operation of the product. The specified assembly and operating steps and their sequences must be observed.
- Any unclear points regarding proper condition or correct assembly/operation must be clarified. Operation is prohibited until issues have been clarified.
- Unauthorized persons must be kept away.
- Wear personal protective equipment.
- All safety regulations and in-house instructions relevant to the particular activity must be observed.

- Responsibilities for different activities must be clearly defined and observed. Uncertainty seriously endangers safety.
- Protective and safety mechanisms must not be removed, modified, nor disabled during operation and must be checked for proper function and completeness at regular intervals.
- If protective and safety mechanisms must be removed, they must be reinstalled immediately following conclusion of work and then inspected for proper function.
- Any malfunctions that occur must be resolved according to responsibility. The supervisor must be notified immediately in case of malfunctions outside one's individual scope of responsibility.
- Never use any part of the centralized lubrication system as a stand or step or for climbing.

1.3 Intended use

On VP and VPK progressive metering devices, the number of cycles should be kept as low as possible by selecting high-volume progressive metering device sections. A maximum value of 200 cycles/min should not be exceeded. This also reduces pressure losses and noise levels.

In case of an installation on moving machine parts or in case of strong vibrations (e.g., on pressing machines), the piston position of the progressive metering device should not correspond with the direction of movement of the machine part.

VP, VPK, and VPB progressive metering devices are classified as a component according to the VDMA Position Paper "Umsetzung der Maschinenrichtlinie 2006/42/EG in Zentralschmiertechnik" (implementation of the Machinery Directive 2006/42/EC in centralized lubrication systems). Any other or additional usage of VP, VPK, or VPB progressive metering devices is deemed non-compliant with the intended use and could result in damage, malfunction, or even injury.

The progressive metering devices are designed for positively driven distribution of lubricants (oils/greases) in a centralized lubrication system.

The maximum inlet volumetric flow of the progressive metering devices is as follows Series:

VP 1000 cm³/min VPK 500 cm³/min VPB 400 cm³/min.

On all series, the maximum permissible operating pressure for oil is 200 bar and 300 bar for grease.

The inlet and outlet fittings and their connecting lines must be designed for these parameters.

The technical requirements for the installation of the VP, VPK, and VPB progressive metering devices are set out in Chapter 6. These requirements must be complied with. The same applies to the technical data in Chapter 4. When designing a progressive metering device, pay attention to the number of cycles (strokes).

1.4 Foreseeable misuse

Any usage of the product other than as specified in this manual is strictly prohibited. Particularly prohibited are:

- Use outside the specified operating temperature range
- Use of non-specified equipment
- Use without a pressure regulating valve
- Use in areas with aggressive, corrosive substances (e.g., high ozone loads)
- Use in areas with damaging radiation (e.g., ionizing radiation)
- Use to feed, forward, or store hazardous substances and mixtures as defined in Annex I Part 2-5 of the CLP Regulation (EC 1272/2008) that are marked with hazard pictograms GHS01-GHS 09

- Use to feed / forward / store gases, liquefied gases, dissolved gases, vapors, or fluids whose vapor pressure exceeds normal atmospheric pressure (1013 mbar) by more than 0.5 bar at their maximum permissible operating temperature
- Use in an explosion protection zone

1.5 Painting plastic components

The painting of all plastic components and seals of the products described here is prohibited.

Completely remove or mask affected components before painting the main machine.

1.6 Modifications to the product

Unauthorized modifications and changes can have an unpredictable effect on safety. Unauthorized modifications and changes are therefore prohibited.

1.7 Prohibition of certain activities

The following activities must be performed only by employees of the manufacturer or authorized persons due to possibly undetectable sources of error or due to statutory requirements:

1.8 Inspections prior to delivery

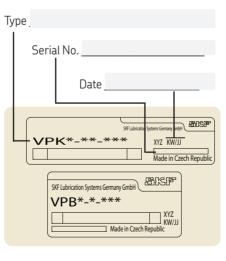
The following tests were performed prior to delivery:

Safety and functional tests

1.9 Referenced documents

In addition to this manual, the following documents must be observed by the respective target group:

- Operational instructions, approval rules
- The safety data sheet of the lubricant used


If necessary:

- Project planning documents
- Instructions from suppliers of purchased parts
- Instructions for other components for setting up the centralized lubrication system
- Other relevant documents for integration of the product into the main machine, system

1.10 Note on the type plate

The type plate provides important data such as the type designation, order number, etc.

To avoid loss of this data in case the type plate becomes illegible, these characteristics should be entered in the manual.

1.11 Note on Pressure Equipment Directive 2014/68/EU

Due to its performance characteristics, the product does not reach the limit values defined in Article 4, Paragraph 1, Subparagraph (a) item (i) and is, pursuant to Article 4, Paragraph 3, excluded from the scope of Pressure Equipment Directive 2014/68/EU.

1.12 Persons authorized to use the product

1.12.1 Operator

A person competent due to training, knowledge, and experience to execute the functions and activities associated with normal operation; this also includes the avoidance of possible hazards that may arise during operation.

1.12.2 Qualified mechanic

A person with appropriate technical training, knowledge, and experience who can recognize and avoid the hazards that may occur during transport, assembly, first startup, operation, maintenance, repair, and dismantling

1.12.3 Qualified electrician

A person with appropriate technical training, knowledge, and experience who can recognize and avoid hazards that may result from electricity

1.13 Instruction of outside fitters

Before commencing work, the operator must inform outside fitters of the operational safety regulations, applicable accident prevention regulations, and the functions of the main machine and its protective devices.

1.14 Provision of personal protective gear

The operator must provide personal protective gear appropriate for the location and intended application.

1.15 Operation

The following must be observed during first start-up and operation:

- All information within this manual and all information within the referenced documents
- All laws and regulations that the operator must observe

1.16 Emergency shutdown

Shut down the product in an emergency by:

- Switching off the main machine in which the product is integrated
- If necessary, pressing the on/off switch on the main machine

1.17 Transport, assembly, maintenance, malfunction, repair, shutdown, disposal

- All relevant persons must be informed of the activity prior to the start of this work.
 Precautionary operational measures, work instructions must be observed.
- Transport only with suitable transport and lifting gear on suitable paths.
- Maintenance and repair work can be subject to restrictions at low or high tem-

peratures (e.g., altered flow properties of the lubricant). Maintenance and repair work should therefore preferably be performed at room temperature.

- Prior to performing work, the product and the machine in which the product will be integrated must be de-energized, depressurized, and secured against unauthorized activation.
- Take appropriate measures to ensure that moving, detached parts are immobilized during the work and that no limbs can be pinched by unintended movements.
- Assemble the product only outside the operating range of moving parts, at an adequate distance from sources of heat or cold. Other units of the machine, the vehicle must not be damaged or impaired in their function by the installation.

- Dry any wet, slippery surfaces or cover appropriately.
- Cover hot or cold surfaces appropriately.
- Work on electrical components may be performed only by qualified electricians. Note possible waiting times for discharge.
- Do not touch cables or electrical components with wet or moist hands.
- Drill required holes only on non-critical, non-load-bearing parts. Use existing boreholes. Do not damage lines or cables when drilling.
- Observe any possible wearing spots. Protect components appropriately.
- All components used must be designed for:
 - The maximum operating pressure
 - The maximum/minimum ambient temperature.
 - 13 -

- No parts may be subjected to torsion, shear, or bending.
- Check parts for contamination before use and clean if necessary.
- Lubrication piping should be filled with lubricant prior to assembly. This simplifies subsequent venting of the system.
- Adhere to the specified torques. Use a calibrated torque wrench when tightening.
- Avoid mixing up/incorrectly assembling disassembled parts. Label parts.

1.18 First start-up, daily startup Ensure that:

- All safety mechanisms are fully present and functional.
- All connections are properly connected.
- All parts are correctly installed.

1.19 Cleaning

There is a fire hazard from the use of flammable cleaning agents. Use only non-flammable cleaning agents that are suitable for the intended purpose.

• Do not use corrosive cleaning agents.

- Do not use steam-jet equipment or highpressure cleaners. This may damage electrical components.
 Observe the IP protection class.
- Mark wet areas accordingly.

1

1.20 Residual risks

Residual risk	Possible in lifecycle	Avoidance / Remedy	
Personal injury / property damage due to falling of hoisted parts	A, B, C, G, H, K	Unauthorized persons must be kept away; nobody is allowed to be present below hoisted parts	
Personal injury/property damage due to tilting or falling product due to non- compliance with specified torques	B, C, G	Adhere to the specified torques. Secure the product only to components with a sufficient load- carrying capacity. If no torques are specified, use those specified for the screw size for screws o strength class 8.8.	
Personal injury / property damage due to spilled, leaked lubricant	B, C, D, F, G, H, K	Be careful when connecting or disconnecting the lubricant piping. Use only hydraulic fittings and lubrication piping suitable for the specified pressure. Do not install lubrication piping on moving parts or wearing spots. If this cannot be avoided, use flexible hose lines or anti-kink coils and/or conduits.	
Lifecycles: A = Transport, B = Assembly, C = First start-up, D = Operation, E = Cleaning, F = Maintenance, G = Malfunction, repair, H = Shutdown, K = Disposal			

2. Lubricants

EN

2.1 General information

Lubricants are used specially for specific applications. To fulfill the task, lubricants must meet various requirements to varying degrees. The most important requirements for lubricants are:

- Reduction in friction and wear
- Corrosion protection
- Noise reduction
- Protection against contamination/ ingress of foreign matter
- Cooling (primarily for oils)
- Durability (physical/chemical stability)
- Compatible with as many materials as possible
- Economic and environmental aspects

2.2 Selection of lubricants

SKF Lubrication Systems considers lubricants to be an element of system design. The selection of a suitable lubricant should reasonably be made during the design of the machine and forms the basis for planning the centralized lubrication system.

The manufacturer/operator of the machine should preferably make the selection with the supplier of the lubricant on the basis of the requirements profile of the specific task.

If you have no or little experience selecting lubricants for centralized lubrication systems, please contact SKF.

We gladly assist our customers in the selection of suitable components for feeding the selected lubricant and in the planning and design of a centralized lubrication system.

This will spare you potentially costly down-time due to damage to the machine/system

and/or damage to the centralized lubrication system.

Only lubricants specified for the product may be used (see "Technical data" chapter). Unsuitable lubricants may lead to failure of the product.

Π

Do not mix lubricants. This can have unpredictable effects on the usability and this function of the centralized lubrication system.

Due to the large number of possible additives, it is possible that individual lubricants that meet the required specifications according to the manufacturer's data sheet are not suitable for use in centralized lubrication systems (e.g., incompatibility between synthetic lubricants and materials). To avoid this, always use lubricants that have been tested by SKF.

2.3 Material compatibility

The lubricants must generally be compatible with the following materials:

- Steel, gray cast iron, brass, copper, aluminum
- NBR, FKM (FPM), ABS, PA, PU

2.4 Aging of lubricants

In case of extended machine downtime. check before re-commissioning that the lubricant is still suitable for use in terms of chemical and physical signs of aging. We recommend performing this inspection after one week of machine downtime.

In case of doubt regarding the suitability of the lubricant, replace it before putting back into operation and, if necessary, perform an initial lubrication manually.

It is possible for lubricants to be tested in the company's laboratory for their suitability for pumping in centralized lubrication systems (e.g., "bleeding").

Please contact SKF if you have further guestions regarding lubricants.

An overview of the lubricants we have tested is available on request.

3. Overview/functional description

3.1 Overview of progressive metering devices

EN

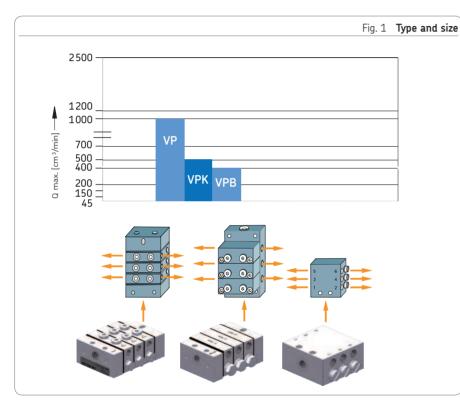
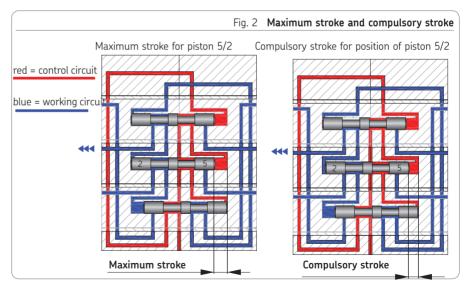


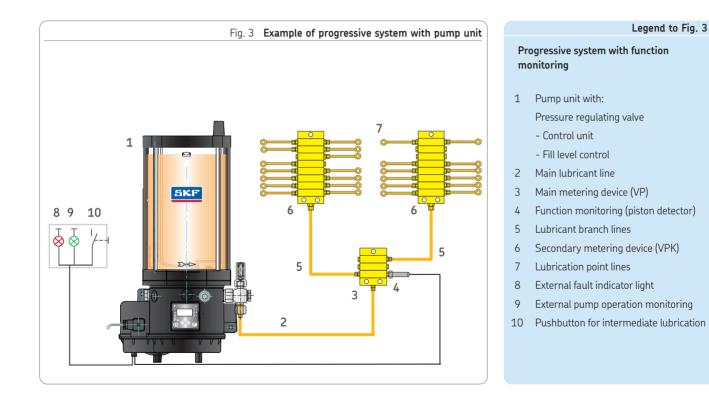
Figure 1 shows the VP, VPK, VPB, series of SKF progressive metering devices with their inlet volumetric flow data.

3.2 Information on volume data

In progressive metering devices, the nominal volume is indicated per stroke. This is calculated from the piston diameter and the maximum possible stroke of the particular metering piston, the maximum stroke. The maximum achievable piston capacity is typically used as the nominal volume when configuring a progressive metering device, though the movement of the piston is influenced by various factors such as:


 Differences in back pressures at the outlets, for example due to long tubing lengths or connected roller bearings or shaft bearings.

- Stroke frequency (dynamics)
- Working temperature, viscosity fluctuations due to strong temperature changes


The maximum stroke and thus the piston capacity/metered quantity can reduce due to these factors.

The minimum piston stroke, also referred to as the compulsory stroke, is determined by the position of the control bores in the progressive metering device and the control edges on the metering piston. If only the compulsory stroke is performed, the metered quantity at the affected outlet is reduced, which also increasing the effective number of piston strokes. The theoretically determined number of piston strokes can therefore deviate from the actual measured value. This must be considered when evaluating pulses on progressive metering devices with a mounted piston detector.

The ratio of piston capacity per progressive metering device outlet determines the distribution ratio of the quantity of lubricant supplied to the progressive metering device. This distribution ratio is usually constant under all operating conditions. Figure 2 shows the piston positions of a progressive metering device section at maximum stroke and at compulsory stroke (minimum stroke).

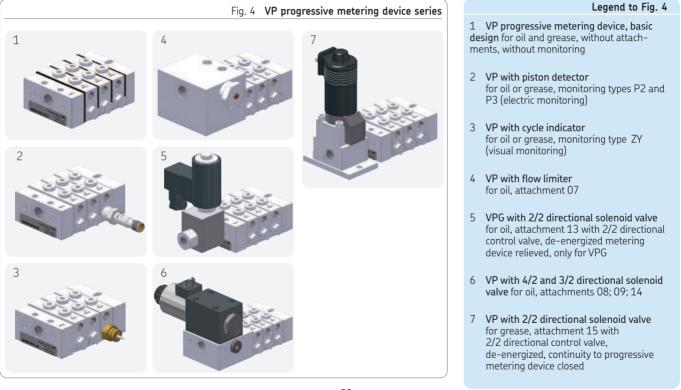
3.3 Overview of a general progressive system

EN

3.3.1 Functional description of a general progressive system

A general progressive metering device system consists of the following components:

- o Pump unit with pump element and pressure regulating valve
- o Possibly function monitoring (piston detector)
- o Main lubricant line
- o Main and possible secondary metering device
- o Branch and lubricant lines


When the pump motor is turned on, the lubricant pump delivers lubricant from its lubricant reservoir to the lubricant outlet. The pump element attached to the outlet delivers the lubricant further, into the downstream main line. The lubricant flows through the main line to the progressive metering device, where it is distributed according to the metered quantity required by the lubrication point being supplied. In progressive systems with a main metering device and secondary metering device, the lubricant coming from the pump unit is delivered to the main metering device. The main metering device distributes the lubricant to the secondary metering devices according to their individual volume requirements. From there, the lubricant flows to the lubrication points.

Depending on the pump design with control unit, the following configuration, monitoring, and connections options are available:

- Interval time and pump cycle time can be adjusted independently, including on monitored systems
- o Recording of remaining intervals and remaining lubrication times
- o Data backup in case of voltage failure
- o Non-volatile memory with PIN code protection
- o Connectivity for piston detectors to monitor the metering device function
- o Connectivity for an external fault indicator light

- o Connectivity for external fault pump operation monitoring
- o Connectivity for an external pushbutton to trigger an intermediate lubrication
- o Internal fill level monitoring; the lubrication cycle stops and fault notification is displayed if the level falls below minimum
- o Fault memory

3.4 Overview of VP progressive metering device series

951-230-008-EN Version 04

EN

3

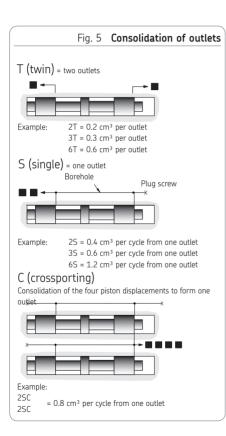
The VP sectional progressive metering device is available in the designs VPM (metric threaded connectors) and VPG (inch threaded connectors).

With their progressive metering device sections (metering sections), VPM and VPG cover a nominal volume per outlet and cycle of 0.1 cm³ (twin section) to 1.2 cm³ (single section).

The inlet of the progressive metering device is located at an inlet section. The outlets are at the downstream progressive metering device sections. The delivery ducts are sealed by elastic seals (plates). An end section is located downstream of the last progressive metering device section.

All sections are interconnected with tierods. They seal the progressive metering device assembly.

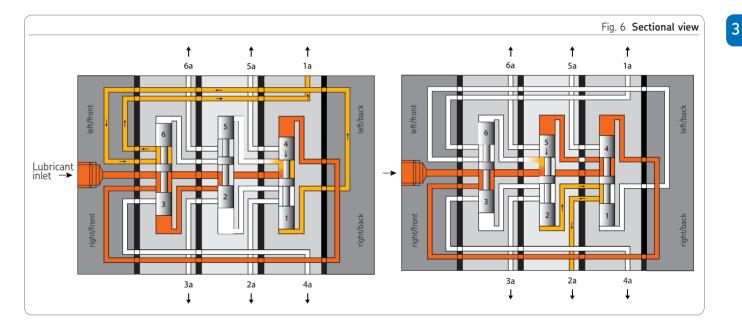
The volumetric flow fed via a tube is forcibly distributed in a predetermined ratio to the outlets, i.e., to the lubrication points or the downstream progressive metering devices. Pistons aligned in series meter the lubricant for two opposite outlets each and control the function of the neighboring piston. This way, the function of the sectional progressive metering device can be checked by monitoring any piston by means of a cycle indicator or piston detector.


Check valves integrated standard offer high functional reliability (at high or differing back pressures). They also provide accurate metering and safe blocking behavior, even for internal and external consolidation of lubricant outlets.

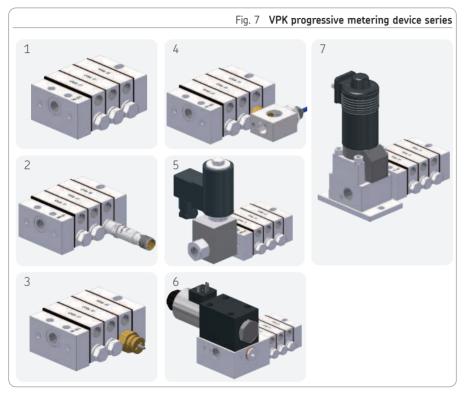
Progressive metering devices distribute a lubricant quantity delivered by a pump to multiple outlets. The individual metering device sections determine the quantity distribution.

The different output quantities within a metering device are achieved by using various progressive metering device sections or consolidating two or more outlets.

For the VPM and VPG sectional progressive metering devices, sections for two outlets (T = twin) or for one outlet (S = single) are available. In case of single sections, the two opposite outlets are connected internally, whereby one outlet is closed. Each section is equipped with a lateral and an upper outlet per side. Only one outlet can be connected at a time. The second outlet must be blocked by either a plug screw, a blockage indicator, or a lubricant nipple. If necessary, crossporting bars can also be connected to the upper outlets.


A progressive metering device of the series VP consists of at least three to a maximum of ten progressive metering device sections.

3.4.1 Functioning of a VP progressive metering device


The task of the progressive metering device is to consecutively distribute specified portions of the pressure-fed lubricant (grease or oil) to the connected lubrication points. The lubricant continues to discharge as long as it is pressure-fed to the progressive metering device. The specified portions are generated through the piston movement. Two lubricant outlets on the two end positions of the piston travel are allocated to each piston.

A progressive metering device contains between 3 and 10 pistons. If lubricant is pressure-fed, the pistons of a progressive metering device move sequentially to their end position. The piston movement displaces a portion of the lubricant that is upstream of the piston to the downstream outlet. A piston can start moving only after the upstream piston has been moved to its end position. If all pistons are in their left or right end position, internal connecting bores in the progressive metering device ensure that the pistons continue running reliably as defined. When all pistons have been moved once to the left end position as well as to the right end position, all connected lubrication points have been supplied once with the preset lubricant quantity. The portions for both outlets are determined by the diameter and the travel of the piston. The selection of the required portion is made during the design of the progressive metering device. Retrofitting of the progressive metering device also changes all portions.

Piston lobe 4 is under pump pressure; piston lobe 1 has discharged to outlet 1a. The connection of main line to piston lobe 5 has been released due to movement of piston 1/4. Piston lobe 5 has been actuated and piston lobe 2 delivers via outlet 2a. Piston lobe 6 is actuated next, etc.

3.5 Overview of VPK progressive metering device series

Legend to Fig. 7

- 1 VPK progressive metering device, basic design for oil and grease, without attachments, without monitoring
- 2 VPK with piston detector for oil or grease, monitoring types P2 and P3 (electric)
- 3 VPK with cycle indicator for oil or grease, monitoring type ZY (visual monitoring)
- 4 VPK with proximity switch for oil and grease, monitoring type ZS (electric monitoring)
- 5 VPKG with 2/2 directional solenoid valve for oil, attachment 13, only for VPG
- 6 VPK with 4/2 and 3/2 directional solenoid valve for oil, attachments 08; 09; 14
- 7 VPK with 2/2 directional solenoid valve for grease, attachment 15 with 2/2 directional control valve, de-energized, continuity to progressive metering device closed

EN

3

The VPK sectional progressive metering device is available in the designs VPKM (metric threaded connectors) and VPKG (inch threaded connectors). With their metering sections, VPKM and VPKG cover a nominal volume per outlet and cycle of 0.05 cm³ (twin section) to 0.6 cm³ (single section). The inlet of the progressive metering device is located at an inlet section. The outlets are at the downstream progressive metering device sealed by elastic seals (plates). An end section is located downstream of the last progressive metering device section.

All sections are interconnected with tierods. They seal the progressive metering device assembly.

The volumetric flow fed via a tube is forcibly distributed in a predetermined ratio to the outlets, i.e., to the lubrication points or the downstream progressive metering devices. Pistons aligned in series meter the lubricant for two opposite outlets each and control the function of the neighboring piston. This way, the function of the sectional progressive metering device can be checked by monitoring any piston by means of a cycle indicator or piston detector.

Optional integrated check valves integrated offer high functional reliability (at high or differing back pressures). They also provide accurate metering and safe blocking behavior, even for internal and external consolidation of lubricant outlets.

Progressive metering devices distribute a lubricant quantity delivered by a pump to multiple outlets. The individual metering device sections determine the quantity distribution.

The different output quantities within a metering device are achieved by using various progressive metering device sections or consolidating two or more outlets.

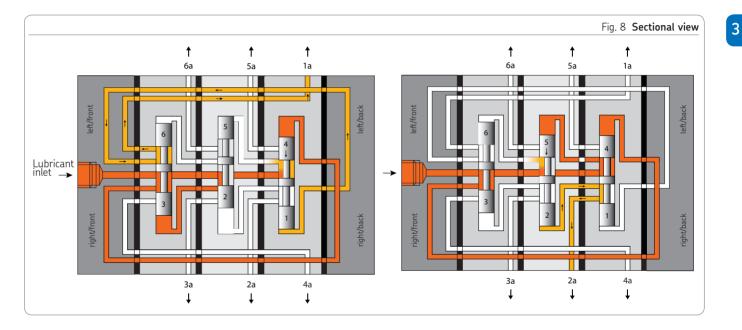
For main metering device/secondary metering device systems, check valves must be used on the metering device outlets of the main metering device. For the VPKM and VPKG sectional progressive metering devices, progressive lubricant metering device sections for two connections (T = twin) or for one connection (S = single) are available. In case of single sections, the two opposite outlets are connected internally, whereby one outlet is closed. For the VPK progressive metering device, it is also possible to consolidate two neighboring outlets after the progressive metering devices have been completely installed. A progressive metering device of the series VPK consists of at least three to a maximum of ten metering sections.

3.5.1 Functioning of a VPK progressive metering device

The task of the progressive metering device is to consecutively distribute specified portions of the pressure-fed lubricant (grease or oil) to the connected lubrication points. The lubricant continues to discharge as long as it is pressure-fed to the progressive metering device. The specified portions are generated through the piston movement. Two lubricant outlets on the two end positions of the piston travel are allocated to each piston.

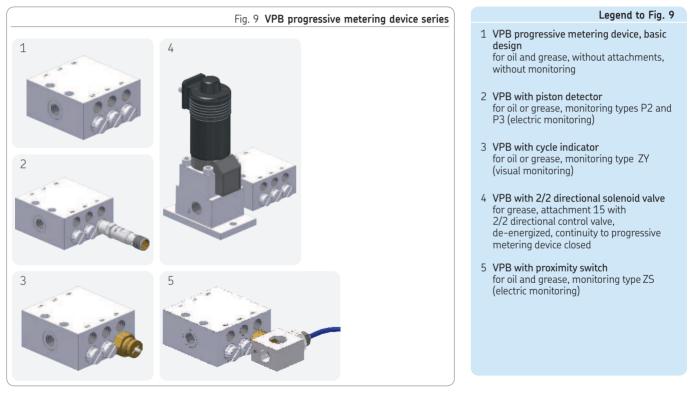
EN

The number of pistons within a progressive metering device is variable from 3-10. If lubricant is pressure-fed, the pistons of a progressive metering device move sequentially to their end position. The piston movement displaces the lubricant upstream of the piston towards the downstream outlet. The piston movement can only start if the upstream piston has reached its end position. If all pistons are in their left or right end position, internal connecting bores in the progressive metering device ensure that the pistons continue running reliably as defined. If all pistons have moved once to the left end position as well as to the right end position, all connected lubrication points have been supplied once with the preset lubricant quantity.


The portions for both outlets are determined by the diameter and the distance traveled by the piston.

The selection of the required portion is made during the design of the progressive metering device. A subsequent change of the portions is only possible through modification of the progressive metering device / replacement of the progressive metering device section.

Information on the design


The general criteria for the design of progressive metering devices also apply without restrictions to the sectional progressive metering devices. The most important criterion is the number of cycles (stroke rate). It should be kept as low as possible by selecting sections with a sufficiently high volume. A maximum value of 200 cycles/min should not be exceeded.

This also reduces pressure losses and noise levels. In case of an installation on moving machine parts or in case of strong vibrations (e.g. on pressing machines), the piston position of the progressive metering device should not correspond with the direction of movement of the machine part.

Piston lobe 4 is under pump pressure; piston lobe 1 has discharged to outlet 1a. The connection of main line to piston lobe 5 has been released due to movement of piston 1/4. Piston lobe 5 has been actuated and piston lobe 2 delivers via outlet 2a. Piston lobe 6 is actuated next, etc.

3.6 Overview of VPB progressive metering device series

EN

The VPB block metering device, which belongs to the progressive metering device range, is available in the designs VPBM (metric threaded connectors) and VPBG (inch threaded connectors).

VPBM and VPBG block metering devices are set to a non-adjustable nominal volume per outlet and cycle of 0.20 cm³. The volumetric flow fed via a tube is forcibly distributed in a predetermined ratio to the outlets, i.e. to the lubrication points or downstream progressive metering devices. Pistons aligned in series meter the lubricant for two opposite outlets each and control the function of the neighboring piston. This way, the function of the block metering device can be checked by monitoring any piston by means of a cycle indicator or piston detector.

Attachable check valves offer high functional reliability (at high or differing back pressures such as in grease systems). They also provide accurate metering and safe blocking behavior, even for internal and external consolidation of lubricant outlets. Block metering devices distribute a quantity of lubricant delivered by a pump to multiple outlets at the same volumetric ratio. Different output quantities within a progressive metering device are achieved by consolidating two or more outlets. For grease systems with a main metering device and secondary metering device, check valves must be used on the metering device outlets of the main metering device. Opposite outlets can be consolidated by removing a blind screw. Additionally, optional crossporting bars can be attached to con-

solidate neighboring outlets.

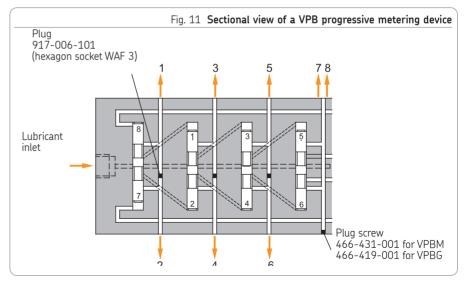
C (crossporting) Consolidation of the four piston displacements to form one outlet

Borehole

Fig. 10 Consolidation of volumes

Plug screw

T (twin) = two outlets


S (single) = one outlet

SKF

3

3.6.1 Functioning of a VPB progressive metering device

The task of the progressive metering device is to consecutively distribute specified portions of the pressure-fed lubricant (grease or oil) to the connected lubrication points. The lubricant continues to discharge as long as it is pressure-fed to the progressive metering device. The specified portions are metered by the piston movement. Two lubricant outlets on the two end positions of the piston travel are allocated to each piston. If lubricant is pressure-fed, all pistons of a progressive metering device move sequentially to their end position. The piston movement displaces a portion of the lubricant that is upstream of the piston to the downstream outlet. A piston can start moving only after the upstream piston has been moved to its end position. If all pistons are in their left or right end position, internal connecting bores in the progressive metering device ensure that the pistons continue running reliably as defined. When all pistons have been moved once to the left end position as well as to the right end position, all connected lubrication points have been supplied once with the preset lubricant quantity. The metered volumes for both outlets are determined by the diameter and the travel of the piston. The selection of the required metered volume is made during the design of the progressive metering device. A subsequent change of the portions is only possible through modification of the progressive metering device.

3.7.2 Function

When the piston detector is actuated (piston stroke), a yellow LED lights up and indicates correct functioning of the piston detector.

The piston detector can be replaced subsequently during operation. However, the adapter must not be removed while removing the previous piston detector! Problems cannot occur in the stopper pressure range of the sensor surface/progressive metering device.

The universal piston detector automatically detects the customer's plug/cable assignment, 2-wire design or 3-wire design (with cable break protection).

The universal piston detector can be used for new lubrication systems. If replacing parts, it is not suitable for use in vehicle applications with a KFAS, KFBS or KFGS lubrication pump due to the undefined pin assignment. The bipolar piston detector should be used in this case.

The bipolar piston detector is available only in a two-wire design. The signal voltage can be applied to either pin 1 or pin 4.

3. Overview/functional description

3.7 Design and functional description of piston detectors3.7.1 Piston detector design

The universal piston detector

234-13163-9 and the bipolar piston detector 234-11454-1 are position sensors that, together with a pressure-resistant adapter, are screwed into the progressive metering device.

Through the closed adapter, the sensors detect the metering device piston without coming into direct contact with it.

Hydraulic pressure spikes therefore do not act directly on the front sensor surface of the piston detectors.

There are different adapters depending on the progressive metering device series. These differ in terms of thread size and clearance. They are specifically tailored to the respective progressive metering device type and piston type.

The piston detectors automatically detect the clearance between the metering device piston and the piston sensor following several metering device strokes and adjust themselves automatically. 3

Technical data 4.

EN

4.1. Volume data for VP progressive metering device sections 4.1.1 Basic design of VP progressive metering device

Volume data for VP progressive metering device sections, Tab	le 1	
--	------	--

Max, inlet volume flow 1000 cm³/min

Nominal volume	Minimum volume 1)			
(at maximum stroke)	(at compulsory stroke, design value only under difficult conditions)			
Volume per cycle and outlet	Volume per cycle Number of Description of and outlet Outlets			
[cm ³]	[cm ³]			
0.10	0.05	2	1T	
0.20	0.14 2 2T			
0.30	0.19 2 3T		3T	
0.40	0.25 2 4T		4T	
0.50	0.30 2		5T	
0.60	0.35	2	6T	
0.20	0.10	1	15	
0.40	0.28 1 2		25	
0.60	0.38 1 35		35	
0.80	0.50 1 44		4S	
1.00	0.60	1	5S	
1.20	0.70	1	65	

1) See explanation in Chapter 3.2, Information on volume data.

VD and an entry and a dealer that dealer. Table 2

VP progressive metering device, basic design, Table 2				
Туре		hydraulically controlled		
Mounting position		Any		
Ambient temperature ran	Ine	-25 to + 90 °C		
- with cycle indicator	ige	-20 to + 70 °C		
- with piston detector		-25 to + 85 °C		
Progressive metering		See Table 1		
device sections				
Used outlets, internal con	inection	3 to 20		
Used outlets, external cor	nnection	1 to 19		
Inlet thread				
VPM (metric thread)		M14x1.5		
VPG (inch thread)		G1/4		
Outlet thread				
VPM (metric thread)		M10x1		
VPG (inch thread)		G1/8		
Material				
Inlet plate, separator plate and end plate		Steel, tinned/nitrile-butadiene		
		rubber		
Sections		Steel, galvanized		
Hydraulic system				
Operating pressure max.:		Oil 200 bar, grease 300 bar		
Volume per outlet and cy	cle See Table 1			
Lubricant	Mineral oils, greases based on mineral oil, environ-			
	mentally friendly and synthetic oils and greases			
Dynamic viscosity	> 12 mm ² /s			
Worked penetration	\geq 265 x 0.1 mm (up to NLGI Grade 2)			

4.1.2 VP progressive metering device with piston detector

VP with piston detector, Table 3	V
VP progressive metering device For further technical data, see the VP basic design	VP pi
Piston detector -see Technical Data, Chapter 4.4.	For fi

4.1.3 VPG progressive metering device with 2/2 directional solenoid valve for oil, attachment 13

VP with 2/2 directional solenoid valve, attachment 13, Table 4

VP progressive metering device				
For further technical data, see the VP basic design				
Thread connection:	Inlet: G1/4"			
Ambient temperature range	- 15 to + 75 °C			
Hydraulic system				
Operating pressure max.	Oil 150 bar			
Lubricant	Mineral oils and synthetic oils			
Dynamic viscosity	20-1000 mm²/s			
Electrical system				
Directional solenoid valve				
(When ordering, please state voltage, type of current, and frequency)				
Valve function 2/2 directional solenoid valve				
Type/operation Pusher/solenoid				
Basic position De-energized open (NO)				
Voltages 24 V DC				
Rated current	1.3 A at 24 V DC $^{-1}$)			
ON-time	100% ON-time			
Protection class	IP 65			
Electrical connection	Plug / DIN 43650			
1) Other operating voltage on request				

4.1.4 VPG progressive metering device with 2/2 directional solenoid valve for grease, attachment 15

VP with 2/2 directional solenoid valve, attachment 15, Table 5

VP progressive metering device			
For further technical data, see the VP basic design			
Thread connection:	Inlet: G1/4"		
Ambient temperature range	- 25 to + 80 °C		
Hydraulic system			
Operating pressure max.	Grease 300 bar		
Lubricant	Greases up to NLGI Grade 2		
Electrical system			
Directional solenoid valve			
Valve function	2/2 directional solenoid valve		
Type/operation	Spherical seat valve		
Basic position	De-energized closed (NC)		
Voltages	24 V DC		
Rated current	0.67 A		
Rated output	16 W		
ON-time	100% ON-time (at max. +35°C)		
Protection class	IP 65		
Electrical connection	Plug / DIN DIN 43650-AF3		

4.1.5 VPG progressive metering device with 4/2 or 3/2 directional solenoid valve for oil, attachments 08; 09; 14

VP with 4/2 and 3/	2 directional	solenoid	valve,	attachmen	ıts 08;
				09; 14,	Table 6

VP progressive metering device			
For further technical data, see the VP basic design			
Thread connection:	Inlet: G1/4"		
Ambient temperature range	- 15 to + 75 °C		
Hydraulic system			
Operating pressure max.	Oil 150 bar		
Lubricant	Mineral oils and synthetic oils		
Dynamic viscosity	20-1000 mm²/s		
Electrical system			
Directional solenoid valve			
(When ordering, please state voltage, type of current, and freque			
Valve function See Chapter 6.3.6			
Type/operation Pusher/solenoid			
Basic position De-energized open (NO)			
Voltages	24 V DC		
Rated current 1.3 A at 24 V DC ¹)			
ON-time	100% ON-time		
Protection class	IP 65		
Electrical connection	Plug / DIN 43650		
1) Other operating voltage on request			

4.1.6 VP progressive metering device with flow limiter

	VP with flow limiter, Table
VP progressive metering device	
For further technical data, see the	VP basic design
Туре	2 directional flow control valve
Mounting position	Any
Ambient and lubricant temperature range	0 to 100 °C
Material	Steel, galvanized
Weight	0.26 kg
Hydraulic system	
Viscosity	20 - 600 mm²/s
Nominal volumetric flow	See plug-in nozzles table
Operating pressure	5 to 200 bar
Required differential pressure between inlet p_1 and outlet p_3	≥ 5 bar

1) The values in the table are based on a differential pressure of 20 bar and viscosity of 300 mm²/s. Other differential pressures or viscosities result in slightly different delivery rates. These can be determined precisely using the charts for delivery quantities and correction factors for the pressure (see brochure 1-3028-EN).

Order No.	Plug-in nozzle Ø mm	Nominal volumetric flow ¹) [l/min]
24-0455-2574	0.50	0.081
24-0455-2575	0.55	0.115
24-0455-2576	0.60	0.150
24-0455-2577	0.65	0.207
24-0455-2578	0.70	0.252
24-0455-2579	0.75	0.290
24-0455-2580	0.80	0.345
24-0455-2581	0.85	0.411
24-0455-2582	0.90	0.468
24-0455-2583	0.95	0.559
24-0455-2584	1.00	0.650
24-0455-2585	1.05	0.730
24-0455-2586	1.10	0.794
24-0455-2587	1.15	0.884
24-0455-2588	1.20	0.978
24-0455-2589	1.25	1.087

Accessories - Table of plug-in nozzles for flow limiters, Table 8

1) At a dynamic viscosity of 300 mm²/s and 20 bar differential pressure; see brochure 1-3028-EN $\,$

4.2. Volume data for VPK progressive metering device sections 4.2.1 Basic design of VPK progressive metering device

Volume data for VPK progressive metering device sections, Table 9				
Max. inlet volume fl	ow 500 cm³/min			
Nominal volume	Minimum volume	Minimum volume 1)		
(at maximum stroke)	(at compulsory stroke, design value only under difficult conditions)			
Volume per cycle and outlet	Volume per cycleNumber of outletsDescription of the sections			
[cm ³]	[cm ³]			
0.05	0.04 2 05T		05T	
0.10	0.08 2 1T			
0.20	0.14 2 2T			
0.30	0.18 2 3T		3T	
0.10	0.08 1 055			
0.20	0.16 1 1S			
0.40	0.28 1 25			
0.60	0.36 1 35			

1) See explanation in Chapter 3.2, Information on volume data.

Basic design of VPK progressive metering device, Table 10			
Tumo		budyoutically controlled	
Туре		hydraulically controlled	
Mounting position		Any	
Inlet and outlet threads		M10x1	
VPKM (metric thread)		M10x1	
VPKG (inch thread)		G1/8	
Ambient temperature rai	nge	-25 to + 90 °C	
- with cycle indicator		-20 to + 70 °C	
- with piston detector		-25 to + 85 °C	
Progressive metering		See Table 10	
device sections			
Used outlets, internal con	nnection	1 to 19	
Material			
Inlet plate, separator plat	te and end	Steel, tinned/nitrile-butadiene	
plate		rubber	
Sections (piston plates)		Steel, galvanized	
Hydraulic system			
Operating pressure max.	:	Oil 200 bar, grease 300 bar	
Volume per outlet and cycle		See Table 9	
Lubricant	Mineral oils, greases based on mineral oil, environ-		
	mentally friendly and synthetic oils and greases		
Dynamic viscosity	> 12 mm²/s		
Worked penetration	\geq 265 x 0.1 mm (up to NLGI Grade 2)		

4.2.2 VPK progressive metering device with piston detector

VPK with piston detector, Table 11

VPK progressive metering device For further technical data, see VPK basic design Piston detector -see Technical Data, Chapter 4.4. 4.2.3 VPK progressive metering device with proximity switch

VPK with provimity switch Table 12

VFR with proximity switch, lable 12			
VPK progressive meteri	ng device		
For further technical data	a, see VPK basic design		
Note!			
Proximity switch, can o	only be used with (NAMUR) switching amplifier!		
Internal thread	Internal thread M12x1		
Design PVC, with 2 m cable, 2x 0.34 mm ²			
Rated voltage 8.2 V DC			
Power consumption conducting > 2.2 mA			
blocking < 1.0 mA			
Protection class IP 67			
Output function	Contact normally closed (NC)		

4.2.4 VPKG progressive metering device with 2/2 directional solenoid valve for oil, attachment 13

VPKG with 2/2 directional solenoid valve, attachment 13, Table 13

VPKG progressive metering device		
For further technical data, see VPK basic design		
Thread connection: Inlet: G1/8"		
Ambient temperature range	- 15 to + 75 °C	
Hydraulic system		
Operating pressure max.	Oil 150 bar	
Lubricant	Mineral oils and synthetic oils	
Dynamic viscosity	20-1000 mm ² /s	
Electrical system		
Directional solenoid valve		
(When ordering, please state voltage, type of current, and frequency)		
Valve function	2/2 directional solenoid valve	
Type/operation	Pusher/solenoid	
Basic position	De-energized open NO	
Voltages	24 V DC	
Rated current	1.3 A at 24 V DC ¹)	
ON-time	100% ON-time	
Protection class	IP 65	
Electrical connection	Plug / DIN 43650	

1) Other operating voltage on request

4.2.5 VPKG progressive metering device with 2/2 directional solenoid valve for grease, attachment 15

VPK with 2/2 directional solenoid valve, attachment 15, Table 14		
VPK progressive metering device		
For further technical data, see VPI	K basic design	
Thread connection:	Inlet: G1/4"	
Ambient temperature range	- 25 to + 80 °C	
Hydraulic system		
Operating pressure max.	Grease 300 bar	
Lubricant	Greases up to NLGI Grade 2	
Electrical system		
Directional solenoid valve		
Valve function	2/2 directional solenoid valve	
Type/operation	Spherical seat valve	
Basic position	De-energized closed NC	
Manual actuation	Yes	
Voltages	24 V DC	
Rated current	0.67 A	
Rated output	16 W	
ON-time	100% ON-time (at max. +35°C)	
Protection class	IP 65	
Electrical connection	Plug / DIN DIN 43650-AF3	

4

4.2.6 VPK progressive metering device with 4/2 and 3/2 directional solenoid valve for oil, attachments 08; 09; 14

VPK 4/2 and 3/2 directional solenoid valve, attachments 08; 09; 14, Table 15		
VPK progressive metering device		
For further technical data, see \	/PK basic design	
Thread connection:	Inlet: VPKM 10x1 VPKG G1/8"	
Ambient temperature range	- 15 to + 75 °C	
Hydraulic system		
Operating pressure max.	Oil 150 bar	
Lubricant	Mineral oils and synthetic oils	
Dynamic viscosity	20-1000 mm ² /s	
Electrical system		
Directional solenoid valve		
(When ordering, please state voltage, type of current, and frequency)		
Valve function	4/2 (3/2) directional solenoid valve	
Type/operation	Pusher/solenoid	
Basic position	4/2 open P > A 3/2 open B > T	
Voltages	24 V DC 1)	
0N-time	100% ON-time	
Protection class	IP 65	
Electrical connection	Plug / DIN 43650	
1) Other operating voltage on request		

4.3. VPB volume data for progressive metering device outlets

EN

Volume data for VPB progressive metering device outlets, Table 16			
Max. inlet volume flow 400 cm ³ /min			
Nominal volume Minimum volume 1)			
(at maximum stroke)	(at compulsory stroke, design value only under difficult conditions)		
Volume per cycle and outlet			
[cm ³]	[cm ³] [cm ³]		
0.20	0.13		
1) See explanation in Chapter 3.2, Information on volume data.			

4.3.1 Basic design of VPB progressive metering device

riogressive metering device vi b, basic design, fable 17			
-			
Туре		hydraulically controlled	
Mounting position		Any	
Ambient temperature range		- 25 to + 110 °C	
- with cycle switch		-15 to + 75 °C	
Inlet thread			
VPBM (metric thread)		M10x1	
VPBG (inch thread)		G1/8"	
Outlet thread			
VPM (metric thread)		M10x1	
VPG (inch thread)		G1/8"	
Material		Steel, galvanized, optional stainless	
Hydraulic system			
Operating pressure max.:		Oil 200 bar, grease 300 bar	
Volume per outlet and cycle	e See Table 16		
Lubricant	Mir	neral oils, greases based on mineral oil,	
	env	rironmentally friendly and synthetic oils	
	and greases		
Dynamic viscosity	> 12 mm ² /s		
Worked penetration	\geq 265 x 0.1 mm (up to NLGI Grade 2)		

Progressive metering device VPB, basic design, Table 17

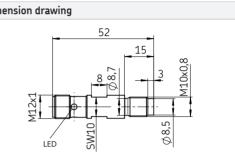
4.3.2 VPB progressive metering device with piston detector

VPB with piston detector, Table 18

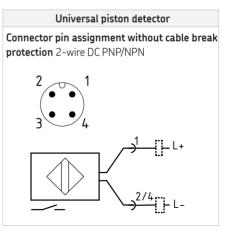
VPB progressive metering device For further technical data, see VPB basic design **Piston detector** -see Technical Data, Chapter 4.4.

4.2.3 VPB progressive metering device with proximity switch

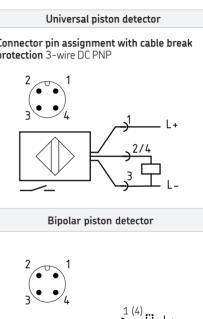
VPK with proximity switch, Table 19			
VPK progressive meteri	ng device		
For further technical data	a, see VPK basic design		
Note!			
Proximity switch, can	Proximity switch, can only be used with (NAMUR) switching		
amplifier!			
Internal thread	M12x1		
Design	PVC, with 2 m cable, 2x 0.34 mm ²		
Rated voltage 8.2 V DC			
Power consumption conducting > 2.2 mA			
blocking < 1.0 mA			
Protection class IP 67			
Output function	Contact normally closed (NC)		

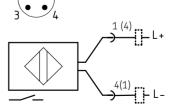

4.3.3 VPB progressive metering device with 2/2 directional solenoid valve for grease, attachment 15

VPB with 2/2 directional solenoid valve, attachment 15, Table 20


VPB progressive metering device		
For further technical data, see VPB basic design		
Thread connection: Inlet: G1/4"		
Ambient temperature range	- 25 to + 80 °C	
Hydraulic system		
Operating pressure max.	Grease 300 bar	
Lubricant	Greases up to NLGI Grade 2	
Electrical system		
Directional solenoid valve		
Valve function	2/2 directional solenoid valve	
Type/operation	Spherical seat valve	
Basic position	De-energized closed (NC)	
Manual actuation	Yes	
Voltages	24 V DC	
Rated current	0.67 A	
Rated output	16 W	
ON-time	100% ON-time (at max. +35°C)	
Protection class	IP 65	
Electrical connection	Plug / DIN DIN 43650-AF3	

4.4 Piston detectors


General data		Designation	Dimension drawing
Field of application		Lubricant metering devices	
Ambient temperature	[°C]	-40+85	-
Principle of operation		Piston detector/position sensor	
Material		Housing: Stainless steel; plug: PEI	
Mounting type		Mountable flush in associated adapter	X III
Tightening torque	[Nm]	7 ±0.5	Ę t
Circuit state display	LED	Yellow/lights up on damping	
Electrical connection		M12x1 plug-in connection, gold-plated contact	LÉD



Sensing range				
Sensing distance	[mm]	2.6 condition on delivery		
Effective sensing distance (Sr)	[mm]	2.6 ±10%		
Sensing distance after 3x 04.2 mm strokes	[mm]	3.3 ±20%, tracked		
Hysteresis	[% of Sr]	\leq 20 / \leq 25, tracked		
Accuracy/deviations				
Switching point	[% of Sr]	±10%		
Reproducibility	[% of Sr]	±10%		
Permiss. operating pressure with associated adapter	[bar]	Identical to permiss. operating pressure of the progressive metering device in which the sensor with adapter is installed		

Electrical data		Universal piston detector	Bipolar piston detector		
Design		3-wire DC PNP 2-wire DC PNP/NPN	2-wire DC PNP/NPN		
Operating voltage	[V]	10-36 DC, supply	class 2 per cULus		
Power consumption	[mA]	<	5		
Safety class		I	l		
Polarity reversal protection		Yes	Reversible		
Output function		NO-cc	ontact		
Voltage drop	[V]	3.5	4.5		
Minimum load current	[mA]	5	5		
Residual current	[mA]	< 0.8			
Current-carrying capacity	[mA]	100			
Short-circuit-proof		Yes			
Overload-proof		Yes			
Switching frequency	[Hz]	10, with damping surface Ø 4mm to 7 Hz			
Protection class	[IP]	IP65 / IP68 / IP69K; with cable box screwed on properly			
Visual differentiation The bipolar piston detector i with a black marking ring.	s equipped				

5. Delivery, returns, and storage

EN

SKF Lubrication Systems Germany GmbH products are packaged in accordance with standard commercial practice according to the regulations of the recipient's country and DIN ISO 9001. During transport, safe handling must be ensured and the product must be protected from mechanical effects such as impacts. The transport packaging must be marked "Do not drop!"

Tilting/dropping hazard Do not tilt or drop the product.

There are no restrictions for land, air, or sea transport.

After receipt of the shipment, the product(s) must be inspected for damage and for completeness according to the shipping documents. The packaging material must be preserved until any discrepancies are resolved.

SKF Lubrication Systems Germany GmbH products are subject to the following storage conditions:

5.1 Lubrication units

- o Ambient conditions: dry and dust-free surroundings, storage in well ventilated dry area
- o Storage time:
 - Unfilled: max. 24 months
 - Filled: max. 12 months
- o Permissible humidity: < 65%
- Storage temperature: + 10 +40°C
 Light: Avoid direct sun or UV exposure
 and shield nearby sources of heat

5.2 General notes

- o The product(s) can be enveloped in plastic film to provide low-dust storage.
- o Protect against ground moisture by storing on a shelf or wooden pallet.
- Bright-finished metallic surfaces, especially wearing parts and assembly surfaces, must be protected using long-term anti-corrosive agents before storage.
- o At approx. 6-month intervals:
- o Check for corrosion. If there are signs of corrosion, reapply anti-corrosive agents.
- o Drives must be protected from mechanical damage.

6. Assembly

6.1 General information

Only qualified technical personnel may install, operate, maintain, and repair the progressive metering devices described in the lifecycle manual. Qualified technical personnel are persons who have been trained, assigned, and instructed by the operator of the final product into which the progressive metering devices are incorporated.

Such persons are familiar with the relevant standards, rules, accident prevention regulations, and operating conditions as a result of their training, experience, and instruction. They are qualified to carry out the required activities and in doing so recognize and avoid potential hazards.

The definition of qualified personnel and the prohibition against employing nonqualified personnel are laid down in DIN VDE 0105 and IEC 364. Before assembling/setting up the product, the packaging material and any shipping braces (e.g., plugs) must be removed. The packaging material must be preserved until any discrepancies are resolved.

IMPORTANT NOTE

Environmental pollution Lubrication lines must always be free of leaks. Lubricants can contaminate soil and waterways. Lubricants must be used and disposed of properly. Observe the local regulations and laws regarding the disposal of lubricants.

6.2 Installation information

Progressive metering devices of series VP, VPK, and VPB are designed for positively driven distribution of lubricants (oils/greases) in a centralized lubrication system. The progressive metering devices can be used in the context of the technical specifications given in the chapter "Technical data." They can be mounted in any alignment. In case of installation on moving machine parts or in case of strong vibrations (e.g., on pressing machines), the piston position of the progressive metering device must not correspond with the direction of movement of the machine part.

To prevent flow resistance, ensure that both the customer's supply line and the output lines are sufficiently large.

Changing the number of sections and/or metering rate of individual sections while retaining the same quantity of grease supply changes all lubrication quantities of the outlets.

The progressive metering device should be installed in an easily accessible position that protects it from humidity and vibration.

The minimum installation dimensions should be adhered to so that all other components can be connected later without problems.

During assembly and during any drilling work, always pay attention to the following:

- Before installing the progressive metering device, ensure that all holes, fittings, and connecting lines in contact with the progressive metering device are clean and free of metal chips.
- o Existing supply lines must not be damaged by assembly work.
- o Other units must not be damaged by assembly work.

- The progressive metering device must not be installed within range of moving parts.
- o The progressive metering device must be installed at an adequate distance from sources of heat.
- o Maintain safety clearances and comply with local regulations for assembly and accident prevention.

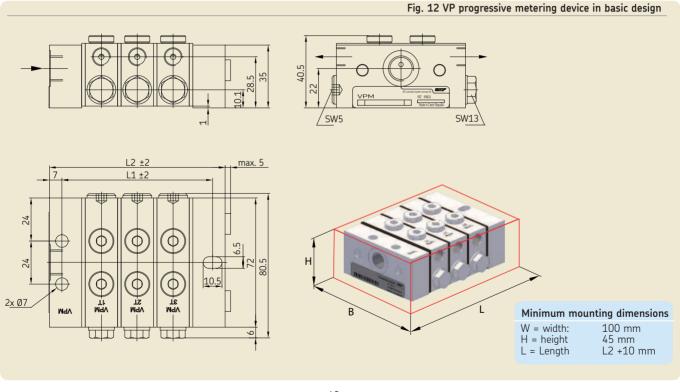
WARNING

Supply lines or moving parts When drilling the assembly holes, you must be careful of any supply lines or other units, as well as of other hazards such as moving components.

Maintain safety clearances and comply with local regulations for assembly and accident prevention.

IMPORTANT NOTE

Follow the safety instructions on the lubricant's safety data sheet.


IMPORTANT NOTE

Observe technical data (Chapter 4).

6.2.1 Minimum mounting dimensions

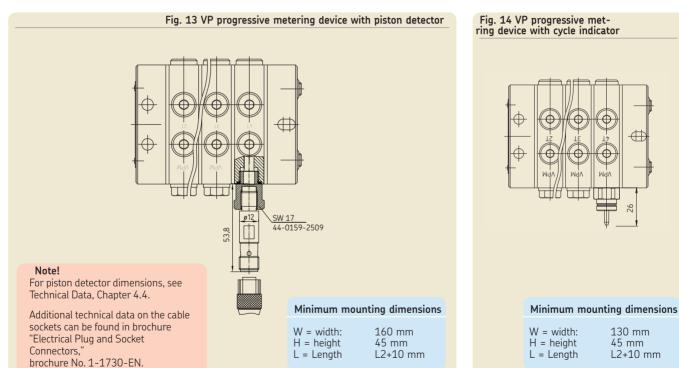
To ensure enough space for maintenance work and for any disassembly of the product, ensure that the minimum mounting dimensions listed below (Figs. 15 and 38) are maintained.

6.3 VP port dimensions, assembly holes, and minimum mounting dimensions 6.3.1 VP in basic design

6.3.2	VP tightening torques
-------	-----------------------

VP dimensions					
Thread connection					
VPM	Inlet:	M14×1.5	Outlet:	M10×1	
VPG	intet:	G1/4"	Outlet:	G1/8"	
Туре	Number of progressive metering device sections	Number of possible outlets	L1	L2	Weight
			[mm]	[mm]	[kg]
VPM-3 / VPG-3	3	6	84	98	1.73
VPM-4 / VPG-4	4	8	104	118	2.1
VPM-5 / VPG-5	5	10	124	138	2.47
VPM-6 / VPG-6	6	12	144	158	2.84
VPM-7 / VPG-7	7	14	164	178	3.21
VPM-8 / VPG-8	8	16	184	198	3.58
VPM-9 / VPG-9	9	18	204	218	3.95
VPM-10/VPG-10	10	20	224	238	4.32

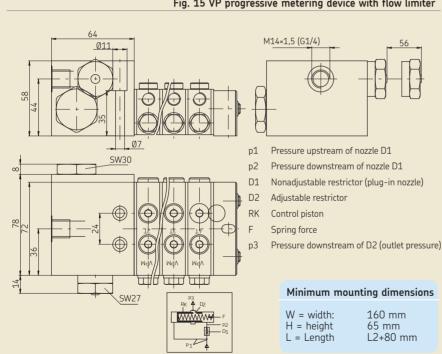
IMPORTANT NOTE


Inlet and outlet fittings - see Chapter 12.1.

The specified torques must be observed during assembly and repair.				
Tie-rod (starter plate) (M8)	2.4 Nm ± 0.1 Nm			
Nut for tie-rod (M8)	12 Nm ± 1.0 Nm			
Outlet fitt	ings			
Type of fitting				
Sealing with O-ring	10 Nm ± 1.0 Nm			
Sealing with EOlastic ring	10 Nm ± 0.1 Nm			
Sealing with copper or alu- minum ring	15 Nm ± 1.5 Nm			
Sealing by sealing edge, with Loctite 243	15Nm ± 1.5 Nm			
Sealing with Conical nipple ¹) 15Nm ± 1.5 Nm				
1) Minimum of 9 Nm at drying time of > 1h sufficient				

Monitoring types P2 / P3 (electric monitoring)

6.3.4 VP progressive metering device with cycle switch


for oil or grease, monitoring type ZY

6

6.3.5 VP progressive metering device with flow limiter

for oil, attachment 07

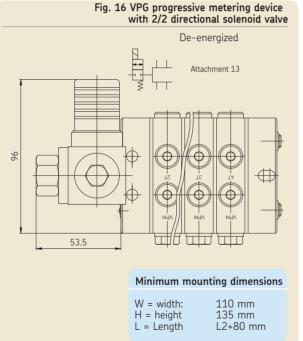
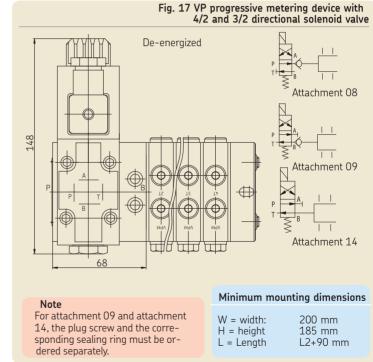
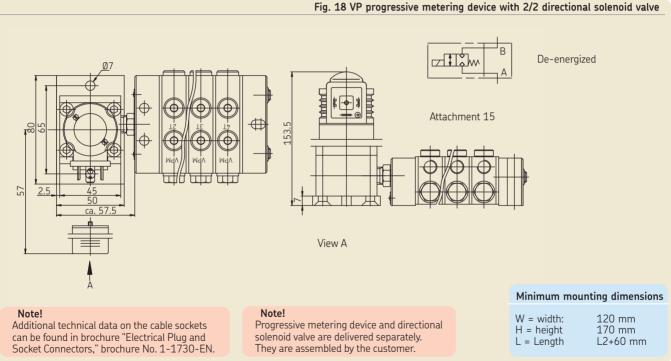


Fig. 15 VP progressive metering device with flow limiter

Functioning of the flow limiter


The flow limiter installed on the VP progressive metering device has two restrictors installed in series (D_1, D_2) . Restrictor D_1 is an interchangeable plug-in nozzle which, as a nonadjustable restrictor, determines the rated volumetric flow. The nonadjustable restrictor D_1 is available in different nozzle sizes (see table). Restrictor D_2 , on the other hand, is adjustable and has a variable nozzle size depending on the position of control piston RK. Displacement of the control piston (RK) against the spring force (F) automatically changes the flow resistance of restrictor **D**₂ in such a way that the differential pressure at nonadjustable restrictor **D**₁ remains constant, as does the volumetric flow as a result.

solenoid valve for oil. attachment 13, 2/2 directional solenoid valve, de-energized, progressive metering device relieved, only design VPG


6.3.6 VPG progressive metering device with 2/2 directional 6.3.7 VP progressive metering device with 4/2 or 3/2 directional solenoid valve

for oil. attachments 08: 09: 14

6

6.3.8 VP progressive metering device with 2/2 directional solenoid valve

6.3.9 Assembly of the VP progressive metering device

-See Chapter 6.3.1, Figure 15

IMPORTANT NOTE

In case of installation on moving machine parts or in case of strong vibrations (e.g., on pressing machines), self-locking screws or a locking adhesive should be used for installation of the progressive metering device.

- Check the parallelism of the surface on which the component is to be installed. Stress-free installation of the component must be ensured.
- Check for any fouling on the threaded holes for progressive metering device installation and on the surface on which the component is to be installed, and clean if needed.

The progressive metering device is installed using 3x M6 screws. If M6 threaded holes are used to fasten the unit,

the screws must have a minimum length of 40 mm.

Fastening material to be provided by the customer:

- o Hexagon head screws (3x) according to EN ISO 4017, M6x45-8.8
- Drill assembly holes (M6) according to assembly drawing (Fig. 14) and the conditions on the surface.
- Clean surface to remove drilling chips.
- Place the progressive metering device on the surface and roughly align it.
- Pass hexagon head screws (3x) according to EN ISO 4017, M6x45-8.8 through fixing holes on the progressive metering device and apply the screws to the M6 threads of the surface.
- Gently tighten hexagon head bolts (3x).

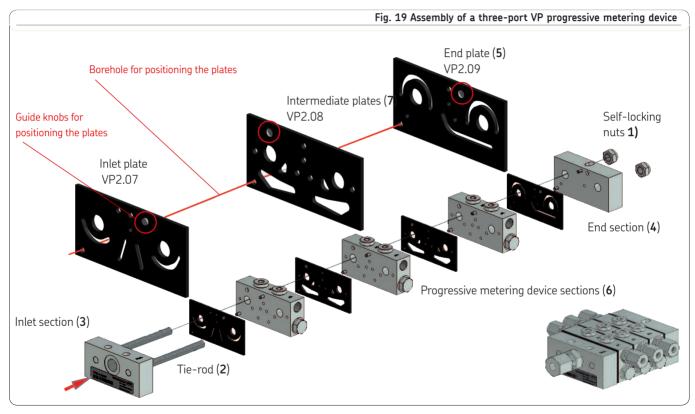
- Align the progressive metering device and tighten the hexagon socket head cap screws diagonally with a torque of 9 Nm
- Apply outlet fittings or SKF quick disconnect couplings to the threads of the outlet bores and tighten with the prescribed torque (Chapter 6.3.2).

6.3.10 Changing VP progressive metering device sections

-see Figure 22

IMPORTANT NOTE

Absolute cleanliness is required when changing one or more progressive metering device sections!


The progressive metering device must be cleaned thoroughly prior to the retrofitting procedure, and the workspace must be free of contaminants and dust.

The progressive metering device has already been disassembled, inlet and outlet fittings and mounting screws must already be removed.

Intermediate plates are located between the progressive metering device sections. They connect the mating boreholes within the sections while also sealing the system against outside influences. Different plates belong to the inlet, progressive metering device, and end section.

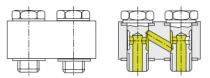
- Clean any contamination from progressive metering device, place on a clean installation surface or clamp into a vice in a stress-free position.
- Loosen and remove both self-locking nuts (1) from the tie-rods (2).
- If the tie-rod (2) comes out too when unscrewing the self-locking nuts (1), first remove the self-locking nut from the tie-rod. The tie-rod's thread must not be damaged in the process. In place of the self-locking nut, install two nuts and position them against each other. Apply locking adhesive at the other end of the tie-rod and then use the locknuts to screw the tie-rid into the inlet section (3) with a torque of 2.5 Nm. Then remove the locknuts.
- Carefully loosen the end section (4) with end plate (5) from the progressive metering device sections (6) and
- and intermediate plates (7) and remove them from the tie-rods (2).

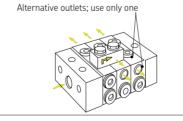
- While performing the following installation of the new progressive metering device sections (6) and intermediate plates (7), be sure that they are mounted in the correct position (see Fig. 22, assembly knobs).
- Carefully insert new progressive metering device sections (6) with new intermediate plates (7) into the tie-rods.
- Carefully insert the end plate (5) with end section (4) into the tie-rods and align the inlet section, metering sections, intermediate plate, and end plate as well as the end section to one another.
- Apply self-locking nuts (1) to tie-rods (2) and tighten alternatingly up to a torque of 12 Nm each.
- Reinstall the progressive metering device and check that it is properly sealed.

6

6.3.11 Connecting outlets on the VPM

In the VPM series, the progressive metering device sections have two outlets on each side, one on the side and one on the top, however only one may be used. The second outlet must always be kept closed. Outlets can only be subsequently consolidated by using a VP-C crossporting bar that is screwed in the upper alternative outlets. Any odd number of outlets can be achieved with the help of single sections without additional crossporting bars.


IMPORTANT NOTE


Use only one outlet, either outlet top or side.

Crossporting is possible in both directions.

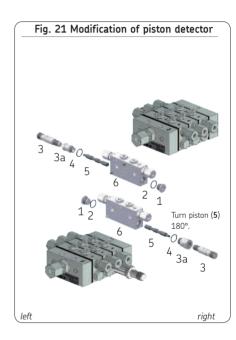
Fig. 20 Attachment of a VPM crossporting bar

Crossporting bars, design complete with banjo bolt and sealing rings. Order No. for VP-C

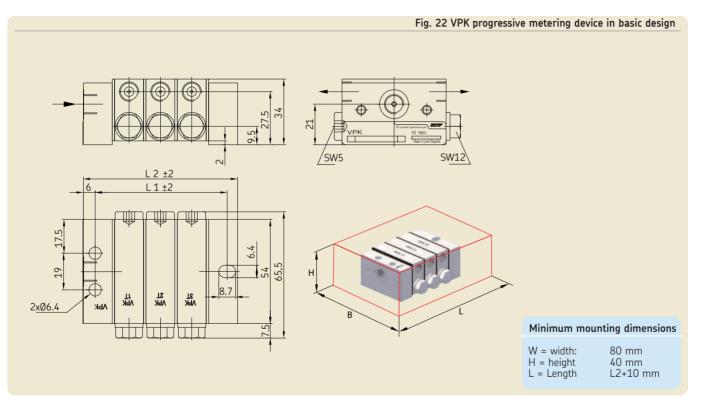
6.3.12 Modification of a piston detector

Retrofitting of the piston detector from a right-sided attachment to left-sided attachment is described below. The steps are identical for reverse retrofitting from left to right.

- Depressurize the lubrication system and progressive metering device.
- If possible, place a drip pan for the discharging lubricant below the progressive metering device.
- Loosen electrical power lead.


- Loosen plug screw (1) (left) and remove with O-Ring (2) (hexagon socket screw key WAF 5).
- Loosen piston detector (3) (right) (WAF 10), loosen adapter for piston detector (3a) (WAF 17), and remove together with O-ring (4).
- Carefully push piston (5) out of the left side of the progressive metering device section (6) using an arbor (Ø 6 mm).
- •
- During subsequent insertion of the piston (5), ensure that it does not bend and that its O-ring is not sheared off.
- Turn piston (5) 180° and carefully insert into the right side of the progressive metering device section (6).
- Install the plug screw (1) with O-ring (2) on the right side.

- Apply adapter for piston detector (3a) with new O-ring (4) on the left side of the module housing.
- Tighten adapter with the prescribed torque.
 VP WAF 17= 20+1Nm
- Install the piston detector (3) finger-tight on the left side.



Avoid uncontrolled tightening of the piston detector, as this could

- cause damage. Maintain tightening torque of 7^{±0,5} Nm.
- Tighten piston detector (3) with a torque of 7+0.5 Nm.
- Connect electrical power lead.

6.4 VPK in basic design

	VPK dimensions					
Thread connection						
VPKM		M10x1	Outlet:	M10×1		
VPKG	Inlet:	G1/8"		G1/8"		
Туре	Number of progressive me- tering device sections	Number of possible outlets	L1	L2	Weight	
			[mm]	[mm]	[kg]	
VPKM-3 / VPKG-3 1)	3	6	68.4	79.9	0.99	
VPKM-4 / VPKG-4	4	8	84.6	96.1	1.18	
VPKM-5 / VPKG-5	5	10	100.8	112.3	1.38	
VPKM-6 / VPKG-6	6	12	117.0	128.5	1.57	
VPKM-7 / VPKG-7	7	14	133.2	144.7	1.77	
VPKM-8 / VPKG-8	8	16	149.4	160.9	1.96	
VPKM-9 / VPKG-9	9	18	165.6	177.1	2.16	
VPKM-10/VPKG-10	10	20	181.8	193.3	2.35	

1) This progressive metering device must be installed with check valves.

IMPORTANT NOTE

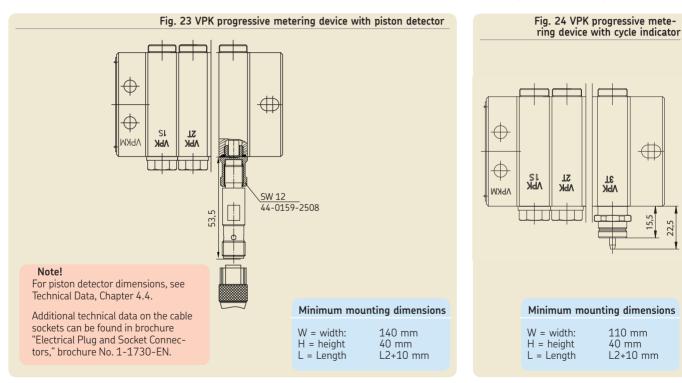
Inlet and outlet fittings - see Chapter 12.2.

6.4.1 VPK tightening torques

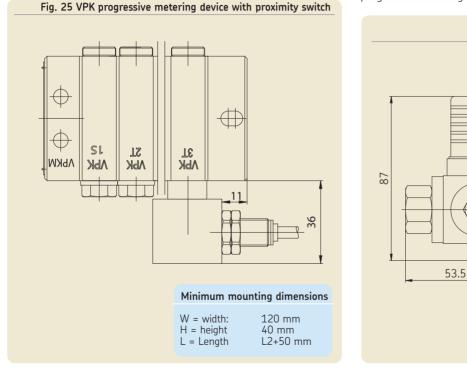
The specified torques must be observed during assembly and repair.				
Tie-rod (starter plate) (M8)	2.4 Nm ± 0.1 Nm			
Nut for tie-rod (M8)	12 Nm ± 1.0 Nm			
Inlet and outle	t fittings			
Type of fitting				
Sealing with O-ring	10 Nm ± 1.0 Nm			
Sealing with EOlastic ring	10 Nm ± 0.1 Nm			
Sealing with copper or alu- minum ring	15 Nm ± 1.5 Nm			
Sealing by sealing edge, with Loctite 243	15Nm ± 1.5 Nm			
Sealing with Conical nipple ¹) 15Nm ± 1.5 Nm				
1) Minimum of 9 Nm at drying time of > 1h sufficient				

6

EN


5KF

6.4.2 VPK with piston detector for oil or grease


Monitoring types P2 and P3 (electric monitoring)

6.4.3 VPK progressive metering device with cycle switch

for oil or grease, monitoring type ZY

22,5

6.4.4 VPK progressive metering device with proximity switch

for oil or grease, monitoring type ZS (electric monitoring)

6.4.5 VPKG progressive metering device with 2/2 directional solenoid valve

for oil, attachment 13, 2/2 directional solenoid valve, de-energized, progressive metering device relieved, only design VPKG

 \oplus

 \oplus

VPK

SI. AbK

W = width:

H = height

L = Lenath

ST VPK

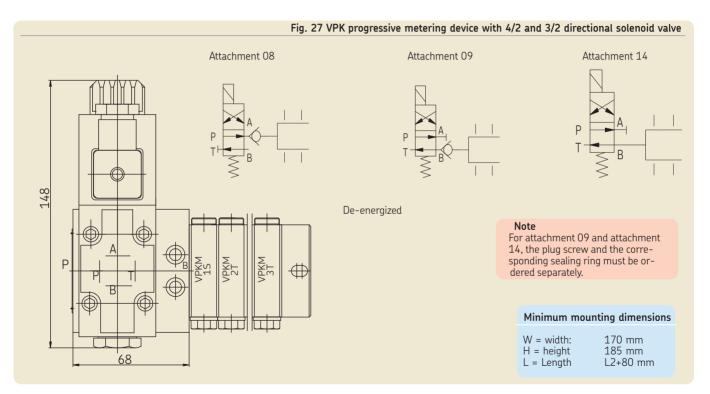
Minimum mounting dimensions

3T VPK

100 mm 130 mm

L2+70 mm

Fig. 26 VPKG progressive metering device with 2/2 directional solenoid valve Attachment 13


De-energized

Æ


6.4.6 VPK progressive metering device with 4/2 or 3/2 directional solenoid valve

for oil, attachments 08; 09; 14

6.4.7 VPK progressive metering device with 2/2 directional solenoid valve

for greases, attachment 15 with 2/2 directional solenoid valve, de-energized, continuity to progressive metering device closed

6.4.8 Assembly of the VPK progressive metering device

IMPORTANT NOTE

In case of installation on moving machine parts or in case of strong vibrations (e.g., on pressing machines), self-locking screws or a locking adhesive should be used for installation of the progressive metering device.

- Check the parallelism of the surface on which the component is to be installed. Stress-free installation of the component must be ensured.
- Check for any fouling on the threaded
 holes for progressive metering device installation and on the surface on which the component is to be installed, and clean if
 needed.

The progressive metering device is installed using 3x M6 screws. If M6 threaded holes are used to fasten the unit,

the screws must have a minimum length of 40 mm.

Fastening material to be provided by the customer:

- o Hexagon head screws (3x) according to EN ISO 4017, M6x45-8.8
- Drill assembly holes (M6) according to assembly drawing (Fig. 23) and the conditions on the surface.
- Clean surface to remove drilling chips.
- Place the progressive metering device on the surface and roughly align it.
- Pass hexagon head screws (3x) according to EN ISO 4017, M6x45-8.8 through fixing holes on the progressive metering device and apply the screws to the M6 threads of the surface.

- Gently tighten hexagon head bolts (3x).
- Align the progressive metering device and tighten the hexagon socket head cap screws diagonally with a torque of 9 Nm
- Apply outlet fittings or SKF quick disconnect couplings to the threads of the outlet bores and tighten with the prescribed torque (Chapter 6.4.1).

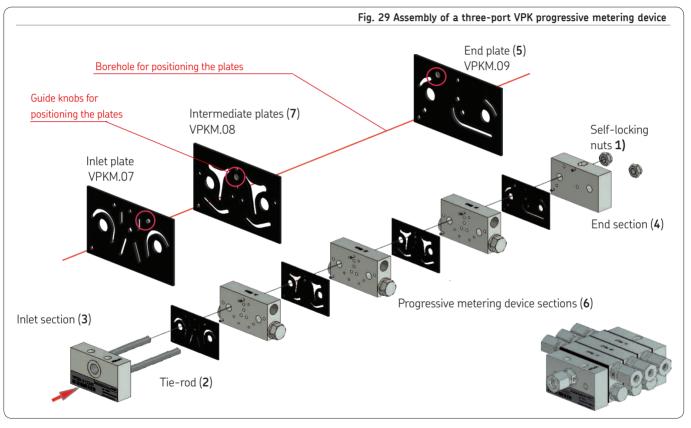
6.4.9 Changing VPK progressive metering device sections

-see Figure 32

IMPORTANT NOTE

Absolute cleanliness is required when changing one or more progressive metering device sections!

The progressive metering device must be cleaned thoroughly prior to the retrofitting procedure, and the workspace must be free of contaminants and dust. The progressive metering device has already been disassembled, inlet and outlet fittings and mounting screws must already be removed.


Intermediate plates are located between the progressive metering device sections. They connect the mating boreholes within the sections while also sealing the system against outside influences. Different plates belong to the inlet, progressive metering device, and end section.

- Clean any contamination from progressive metering device, place on a clean installation surface or clamp into a vice in a stress-free position.
- Loosen and remove both self-locking nuts (1) from the tie-rods (2).
- If the tie-rod (2) comes out too when unscrewing the self-locking nuts (1), first remove the self-locking nut from the tie-rod. The tie-rod's thread must not be damaged in the process. In place of the self-locking nut, install two nuts and position them against each other. Apply locking adhesive at the other end of the tie-rod and then use the locknuts to screw the tie-rid into the inlet section (3) with a torque of 2.5 Nm. Then remove the locknuts.
- Carefully loosen the end section (4) with end plate (5) from the progressive metering device sections (6)

- 67 -

and intermediate plates (**7**) and remove them from the tie-rods (**2**).

- While performing the following installation of the new progressive metering device sections (6) and intermediate plates (7), be sure they are mounted in the correct position (see Fig. 21, assembly knobs).
- Carefully insert new progressive metering device sections (6) with new intermediate plates (7) into the tie-rods.
- Carefully insert the end plate (5) with end section (4) into the tie-rods and align the inlet section, metering sections, intermediate plate, and end plate as well as the end section to one another.
- Apply self-locking nuts (1) to tie-rods (2) and tighten alternatingly up to a torque of 12 Nm each.
- Reinstall the progressive metering device and check that it is properly sealed.

6.4.10 Consolidation of multiple outlets (crossporting)

Twin sections of a progressive metering device have a plug for crossporting. The volumetric flow of an outlet can be consolidated with other outlets as desired by removing the corresponding plug. This way, two or more outlets of an entire progressive metering device side can be combined as long as there is no single section in-between. The single section completes the group formation; a new group can only be formed behind the single section. Should it later be necessary to separate the guantity of two neighboring outlets, for example due to an additional lubrication point, then this can be done without difficulty. The plug 917-006-101 merely needs to be screwed back in and the previously closed outlet connected to the lubrication point. Crossportings are typically necessary when:

- If individual sections on progressive metering devices of series VPKM need to be replaced with sections with different metering;
- A progressive metering device is to be supplemented with additional sections;
- A progressive metering device is to be cleaned/repaired, then they must be disassembled and later consolidated again.

When increasing/reducing the number of sections, the two tie-rods (stud bolts) that hold the sections and plates together must always be replaced.

IMPORTANT NOTE

Two neighboring outlets are consolidated from the end section towards the inlet section.

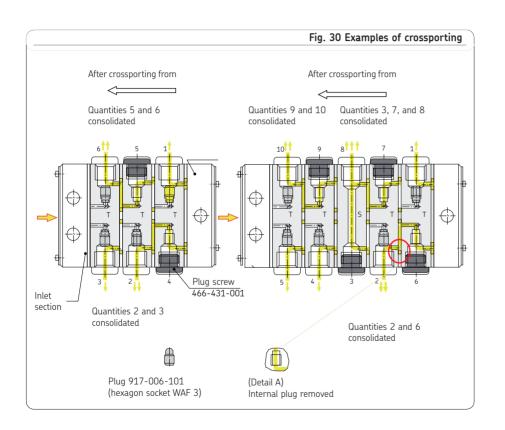
IMPORTANT NOTE

The progressive metering device section behind the inlet section must not be closed.

Always ensure that plug 917-006-101 has been removed before screwing in plug screw 466-431-001; otherwise, the progressive metering device may jam. 6

IMPORTANT NOTE

Outlets of a progressive metering device that are not needed must not be closed because this will cause the progressive metering device to block. Consolidate unneeded outlets as described with a neighboring outlet or connect them to the pump via the return line. Changing the number of sections and/or metering rate of individual sections while retaining the same quantity of grease supply changes all lubrication quantities of the outlets. With crossporting, two or more outlets of an entire progressive metering device side can be combined as long as there is no single section in-between. The single section completes the group formation; a new group can only be formed behind the single section. Two neighboring outlets are consolidated from the end section towards the inlet section.


Procedure:

- Unscrew the appropriate plug
- 917-006-101 using a hexagon socket screw key (WAF 4).
- Close the outlet borehole with a plug screw.
- The quantity from both outlets will then flow out of the outlet neighboring the inlet section.

IMPORTANT NOTE

The progressive metering device section behind the inlet section must not be closed!

6

6.4.11 Modification of a piston detector

WARNING

System pressure

Pressure must not be applied to the progressive metering device section during the retrofitting described below.

Depressurize the progressive metering device.

Retrofitting of the piston detector from a right-sided attachment to left-sided attachment is described below. The steps are identical for reverse retrofitting from left to right.

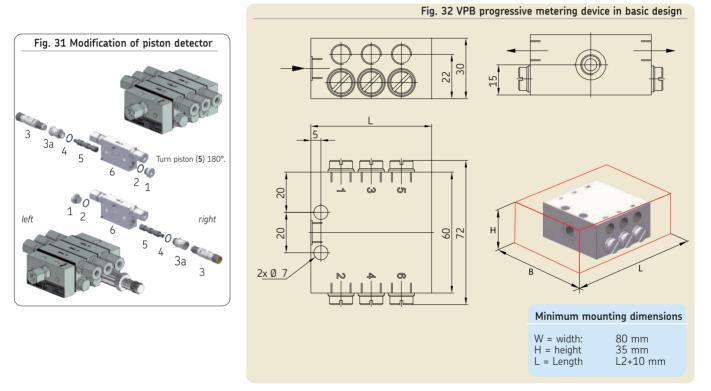
- Depressurize the lubrication system and progressive metering device.
- If possible, place a drip pan for the discharging lubricant below the progressive metering device.

- Loosen electrical power lead.
- Loosen plug screw (1) (left) and remove with O-Ring (2) (hexagon socket screw key WAF 5).
- Loosen and remove piston detector (3) (right) (WAF 14).
- Loosen adapter for piston detector (3a) (WAF 12) and remove with O-ring (4).
- Carefully push piston (5) out of the left side of the progressive metering device section (6) using an arbor (Ø 6 mm).
- During subsequent insertion of the piston (5), ensure that it does not bend and that its O-ring is not sheared off.
- Turn piston (5) 180° and carefully insert into the right side of the progressive metering device section (6).

- 72 -

- Install the plug screw (1) with O-ring (2) on the right side.
- Tighten adapter with the prescribed torque.
 VPK WAF 12= 15⁺¹Nm
- Install the piston detector (3) finger-tight on the left side.

Avoid uncontrolled tightening of the



piston detector, as this could cause damage. Maintain tightening torque of 7^{±0.5} Nm.

- Tighten the piston detector (3) with new O-ring (4) with a torque of 7+0.5 Nm
- Connect electrical power lead.

6

6.5 VPB in basic design

Tie-rod (starter plate) 2.4 Nm ± 0.1 Nm			
Nut for tie-rod (M8)	12 Nm ± 1.0 Nm		
Inlet and outle	t fittings		
Type of fitting			
Sealing with O-ring	10 Nm ± 1.0 Nm		
Sealing with EOlastic ring	10 Nm ± 0.1 Nm		
Sealing with copper or alu- minum ring	15 Nm ± 1.5 Nm		
Sealing by sealing edge, with Loctite 243	15Nm ± 1.5 Nm		
Sealing with Conical nipple ¹)	15Nm ± 1.5 Nm		

Thread connection			
VPBM		M10x1	
VPBG	Inlet:	G1/8"	Outlet:
Туре	Number of progressive metering device sections	Number of possible outlets	L
			[mm]
VPBM-3 / VPBG-3 1)	3	6	60
	4	8	75
VPBM-4 / VPBG-4	4	0	75
VPBM-4 / VPBG-4 VPBM-5 / VPBG-5	5	10	90
-			

1) This progressive metering device must be installed with check valves.

7

8

9

10

14

16

18

20

120

135

150

165

IMPORTANT NOTE

VPBM-7 / VPBG-7

VPBM-8 / VPBG-8

VPBM-9 / VPBG-9

VPBM-10/VPBG-10

Inlet and outlet fittings - see Chapter 12.3.

VPB dimensions

Weight

[kg] 0.75 0.90 1.10 1.30

1.50

1.70

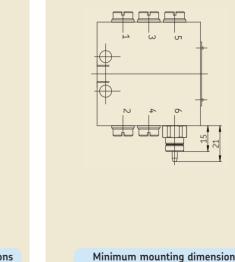
1.90

2.1

M10×1 G1/8"

EN

6


6.5.2 VPB with piston detector for oil or grease

Monitoring types P2 and P3 (electric monitoring)

6.5.3 VPB progressive metering device with cycle switch

for oil or grease, monitoring type ZY

Fig. 34 VPB progressive metering device with cycle indicator

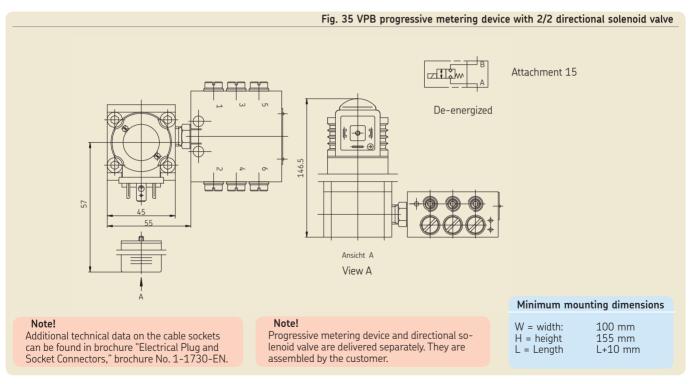

Minimum	mounting dimensions
W = width:	110 mm
H = height	35 mm
L = Length	L+10 mm

Fig. 33 VPB progressive metering device with piston detector

SW 12 44-0159-2507 53,6 Note! For piston detector dimensions, see Technical Data, Chapter 4.4. Minimum mounting dimensions Additional technical data on the cable 140 mm W = width:sockets can be found in brochure H = heiaht 35 mm "Electrical Plug and Socket Connec-L = LengthL+10 mm tors," brochure No. 1-1730-EN.

6.5.4 VPB progressive metering device with 2/2 directional solenoid valve

for greases, attachment 15 with 2/2 directional solenoid valve, de-energized, continuity to progressive metering device closed

6.5.5 Assembly of the VPB progressive metering device

-See Chapter 6.5.1, Figure 34

IMPORTANT NOTE

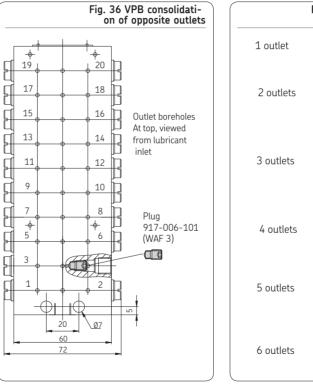
In case of installation on moving machine parts or in case of strong vibrations (e.g., on pressing machines), self-locking screws or a locking adhesive should be used for installation of the progressive metering device.

- Check the parallelism of the surface on which the component is to be installed. Stress-free installation of the component must be ensured.
- Check for any fouling on the threaded holes for progressive metering device installation and on the surface on which the component is to be installed, and clean if needed.

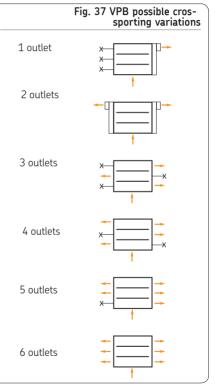
The progressive metering device is installed using 3x M6 screws. If M6 threaded holes are used to fasten the unit,

the screws must have a minimum length of 40 mm.

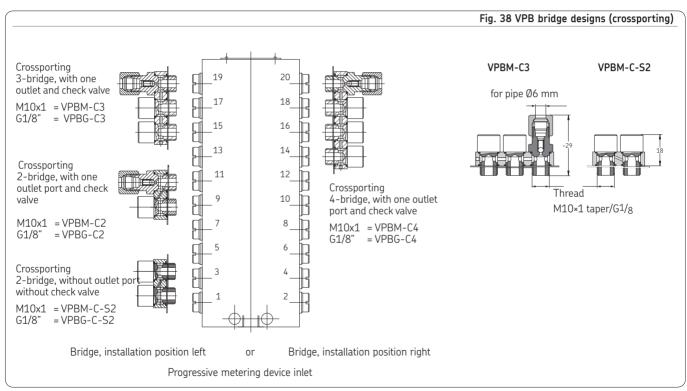
Fastening material to be provided by the customer:


- o Hexagon head screws (3x) according to EN ISO 4017, M6x40-8.8
- Drill assembly holes (M6) according to assembly drawing (Fig. 23) and the conditions on the surface.
- Clean surface to remove drilling chips.
- Place the progressive metering device on the surface and roughly align it.
- Pass hexagon head screws (3x) according to EN ISO 4017, M6x40-8.8 through fixing holes on the progressive metering device and apply the screws to the M6 threads of the surface.
- Gently tighten hexagon head bolts (3x).
- Align the progressive metering device and tighten the hexagon socket head cap screws diagonally with a torque of 9 Nm

• If necessary, apply outlet fittings or SKF quick disconnect couplings to the threads of the outlet bores and tighten with a torque of 25 Nm.


EN

6.5.6 Consolidation of opposite outlets


It is possible to subsequently connect two opposite outlets internally by removing a plug from the right outlet borehole and closing one of the two outlets.

6.5.7 Consolidation of multiple outlets (crossporting)

5KF

6

EN

SKF

Outlets of a progressive metering device that are not needed must not be closed because this will cause the progressive metering device to block. Consolidate unneeded outlets with a neighboring outlet or connect them to the pump via the return line.

Risk of slipping Exercise caution when handling lubricants; immediately bind and remove any leaked lubricants.

The customer must take appropriate precautions to ensure that no contamination enters the lubricant and thus the progressive metering device.

EN

951-230-008-EN Version 04

6

0

Connect the lubricant piping in such a way that no forces are transferred to the product (stress-free connection).

All components of the centralized lubrication system must be designed for:

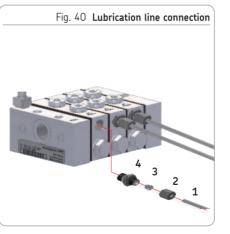
- The maximum pressure that occurs
- The permissible temperature range
- The delivery volume and the lubricant to be fed
- - Secure the centralized lubrication system against excessive pressure using an appropriate pressure regulating valve.

Observe the following assembly information for safe and trouble-free operation.

- Use only clean components and prefilled lubrication lines.
- The main lubricant line should be arranged ascending and be ventable at the highest point. Lubrication piping should always be arranged so that air inclusions cannot form anywhere.
- Install lubricant metering devices at the end of the main lubricant line such that the outlets of the lubricant metering devices point upwards.
- If the system configuration requires that the lubricant metering devices be arranged below the main lubricant line, they should not be placed at the end of the main lubricant line.
- The flow of lubricant should not be impeded by the incorporation of sharp bends, angle valves, flap valves, seals protruding inward, or

- changes in cross-section. Unavoidable changes in the cross-section in lubrication piping must have smooth transitions.
- Use only grounded steel pipelines.
- For higher operating pressures up to 250 bar, SKF compression fittings conforming to DIN 2353 can be used. If using fittings from other manufacturers, pay careful attention to the assembly instructions and technical specifications provided by the manufacturer.

6.6.1 Mounting process


-see Figure 40

EN

- Deburr the connecting end of the lubrication line (1).
- Loosen the union nut (2) and cutting sleeve (3) from the threaded socket (4).
- Screw the threaded socket into the progressive metering device outlet (4) and tighten.
- Insert the lubrication line (1) into the union nut (2) and cutting sleeve (3).
- Insert the lubrication line (1), union nut
 (2), and cutting sleeve (3) into the threaded socket (4).
- Apply the union nut (2) to the thread of the threaded socket (4) and gently tighten the union nut (2) by hand.

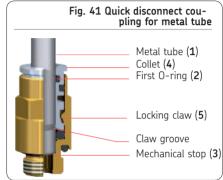
• Tighten the union nut (2) with an openend wrench.

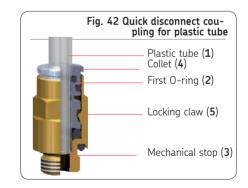
Tightening torque:VPChapter6.3.2VPKChapter6.4.1VPBChapter6.5.1

6.7 Assembly of the lubrication lines using quick disconnect couplings

-See Figure 41 and Fig. 42

The SKF quick disconnect couplings are available in designs for metal or plastic pipes. With the design for metal tubes, there is a further choice available between tube versions with and without claw groove. The claw groove securely fastens the tube in the plug connectors, which prevents the metal tube from slipping out of the SKF quick disconnect coupling. Both designs, for metal and plastic pipes, have a locking claw. The locking claw of the collet secures the tube in the SKF quick disconnect coupling, which prevents the tube from accidentally slipping out, at least in the case of the design for plastic tubes.


- Cut the connecting tube (1) to the correct length with a tube cutter (see Accessories).
- In the following installation of the tube, a noticeable resistance must be overcome when passing through the first O-ring (2),


the locking claw (5) of the collet (4). If a claw groove is not used, fix the pipe using appropriate

fastening hardware (e.g., mounting clips) to prevent the tube from slipping out of the SKF quick disconnect coupling.

- Manually insert the tube (1) fully into the collet (4) of the SKF quick disconnect coupling until it clears the first O-ring (2) and the locking claw (5) of the collet (4) and reaches the mechanical stop (3).
- To remove the metal tube (1), press the collet (4) inward into the SKF quick disconnect coupling. The metal tube (1) can now be pulled out of the collet (4) of the SKF quick disconnect coupling. To remove the plastic tubing (1), press the collet (4) inward into the SKF quick disconnect coupling. To do this, also press the plastic pipe (1) inward into the SKF plug connector fitting, which

releases the collet (4) from the plastic pipe (1). The plastic tube (1) can now be pulled out of the collet (4) of the SKF quick disconnect coupling. Before reassembling, shorten the end of the plastic tube by at least 7 mm to ensure that the locking claw (5) of the collet (4) functions properly.

6.9 Lubrication line arrangement

EN

When arranging the main lubricant lines and lubrication point lines, observe the following instructions in order to ensure that the entire centralized lubrication system functions smoothly.

The main lubricant line must be dimensioned in accordance with the maximum operating pressure occurring in the pump unit used and the displacement of that pump unit. If possible, the main lubricant line should rise upward from the pump unit and be ventable at the highest point on the lubrication line system.

Lubricant metering devices at the end of the main lubricant line must be installed such that the outlets of the metering devices point upwards. If the system configuration requires that the lubricant metering devices be arranged below the main lubricant line, they should not be placed at the end of the main lubricant line. The tubes, hoses, shutoff valves, directional control valves, fittings, etc. that will be used must be designed for the maximum operating pressure of the pump unit, the permissible temperatures, and the lubricants that will be delivered. The lubrication line system also needs to be protected from excessive pressure by means of a pressure-limiting valve.

All components of the lubrication line system such as tubes, hoses, shutoff valves, directional control valves, fittings, etc. must be carefully cleaned before assembly. No seals in the lubrication line system should protrude inwards in a way that disrupts the flow of the lubricant and could allow contaminants to enter the lubrication line system.

Lubrication piping should always be arranged so that air pockets cannot form anywhere. Avoid changes in the cross-section of the lubrication line from small to large cross-sections in the direction of flow of the lubricant. When the cross-section does change, the transition should be gentle.

The flow of lubricant in the lubrication lines should not be impeded by the incorporation of sharp bends, angle valves, or flap valves. Unavoidable changes in the cross-section in lubrication piping must have smooth transitions. Sudden changes of direction should be avoided if possible.

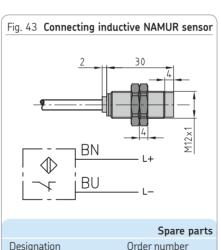
Note!

For further requirements for installation, see DIN 20066.

6.10 Electrical connection

Connect the power cables in such a way that no forces are transferred to the product (stress-free connection).

) See indu

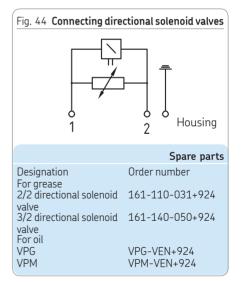

See the electrical data for the inductive NAMUR sensor, Chapter 4, Technical Data

Only attachments and monitoring equipment approved by SKF for the progressive metering devices may be installed.

6.10.1 Connecting the inductive NAMUR sensor (VPK)

-see Figure 43

- See electrical data for VPK, page 39
- Connect inductive NAMUR sensor according to terminal diagram in Figure 43.



6.10.2 Connecting directional solenoid valves

-see Figure 44

- See electrical data for directional solenoid valves, VP page 35; VPK page 40 and VPB page 43.

• Connect directional solenoid valve according to terminal diagram in Figure 44.

ΕN

6

177-300-075

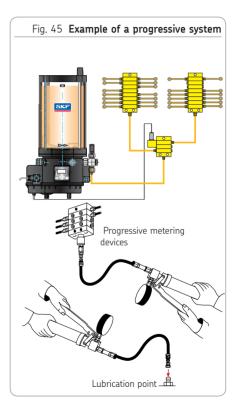
NAMUR sensor

7. First start-up

EN

IMPORTANT NOTE

Only fill using clean lubricant and an appropriate device. Contaminated lubricants lead to system malfunctions. The lubricant reservoir of the pump unit must be filled without introducing bubbles.


7.1 Venting a grease progressive system -see Figure 42

The progressive metering devices are subjected to functional monitoring using oil at the factory. It is possible that oil will discharge from the progressive metering device at the start of commissioning. The venting process starts at the main metering device and proceeds to the lubrication points, then from the secondary metering devices to the lubrication points.

• Connect the hand lever grease gun or lubricating device to the progressive

metering device inlet or, if present, to the emergency lubricant nipple attached to the progressive metering device.

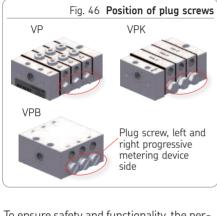
- Actuate the hand lever grease gun or lubricating device until bubble-free lubricant discharges at all progressive metering device outlets.
- Use a hand lever grease gun or lubricating device to perform a flow check on or fill all lubrication points that will be connected.
- Completely fill lubrication lines with grease and connect to the progressive metering device outlets.
- Actuate the grease lubrication pump, hand lever grease gun, or lubricating device until bubble-free lubricant discharges at the end of the lubrication lines.

7.2 Venting an oil progressive system

-see Figure 40

A requirement for venting an oil progressive system is that the system has already been fully assembled.

- Slightly loosen the main lubrication line on the hand pump or pump unit, actuate the pump/pump unit until bubble-free oil discharges at the main lubrication line.
- Retighten the main lubrication line at the pump.
- Slightly loosen the main lubrication line on the main metering device, actuate the pump/pump unit until bubble-free oil discharges at the main metering device.
- Retighten the main lubrication line at the main metering device.


- Slightly loosen the main lubrication lines of the main metering device at the outlets, actuate the pump/pump unit until bubble-free oil discharges at the outlets.
- Retighten the lubrication line at the main metering device.
- Repeat venting at the secondary lubrication lines, secondary metering devices, and lubrication lines.
- An additional venting as described below is necessary if problems occur while venting the progressive metering devices (air still in the device, too little lubricant discharge).

VP and VPK progressive metering devices:

- Loosen the right and left plug screws at the last metering section as viewed from the progressive metering device outlet.
- Actuate the pump/pump unit until bubble-free oil discharges at the plug screws.
- Retighten the left and right plug screws.

VPB progressive metering devices:

- Loosen the right and left plug screws at the first metering piston as viewed from the progressive metering device outlet.
- Actuate the pump/pump unit until bubble-free oil discharges at the plug screws.
- Retighten the left and right plug screws.

To ensure safety and functionality, the person specified by the operator is required to perform the following inspections. Any detected deficiencies must be resolved immediately. The correction of deficiencies must be done exclusively by a specialist competent and authorized to do so.

Checklist for first start-up		
7.3 Inspections before first start-up	YES	NO
Electrical connection (inductive NAMUR sensor) established correctly		
Mechanical connection established correctly		
The performance characteristics for the aforementioned connections match the specifications in "Technical data."		
All components such as lubrication piping and progressive metering device are correctly mounted.		
Product is protected by a suitable pressure relief valve.		
No apparent damage, contamination, or corrosion		
Any dismantled protective and monitoring equipment is fully reinstalled and functional		
Equipotential bonding fully present, properly connected, and electrically continuous		
No accumulated dust present		
7.4 Inspections during first start-up		
No unusual noises, vibrations, moisture accumulation, odors present		
No undesired discharge of lubricant at connections (leakage)		
Lubricant is fed without bubbles		
The bearings and friction points requiring lubrication receive the planned lubricant volume		

8. Operation

A

Explosion hazard

The product and its equipotential bonding connection must be connected to the equipotential bonding of the main machine.

SKF products operate automatically.

The activities required during normal operation are limited primarily to checking the connections and cleaning of the exterior of the product if contaminated.

9. Cleaning

14

Electric shock

Perform cleaning work only on products that have been de-energized and depressurized.

Do not touch cables or electrical components with wet or moist hands.

Use steam-jet equipment or highpressure cleaners only in accordance with the IP protection class of the pump. Otherwise, electrical components may be damaged. Cleaning, required personal protective gear, cleaning agents, and equipment are in accordance with the current operating rules of the operator.

9.1 Cleaning agents

Only cleaning agents compatible with the materials can be used for cleaning (see Section 2.3 for materials).

Always completely remove residue of the cleaning agent on the product and rinse with clear water. This prevents the formation of alkaline deposits.

SKF

9.2 Exterior cleaning

EN

- Mark and secure wet areas.
- Unauthorized persons must be kept away.
- Thoroughly clean all external surfaces with a moist cloth.

9.3 Interior cleaning

The interior normally does not need to be cleaned.

The interior of the product must be cleaned if incorrect or contaminated lubricant is accidentally filled. Please contact SKF Customer Service.

9.4 Cleaning the NAMUR sensor

If the active sensor surface becomes contaminated, it must be cleaned with a cloth.

10. Maintenance

10.1 General information

SKF progressive metering devices are maintenance-free. All connections and fittings must be regularly inspected for proper seating to ensure proper function. If necessary, the product can be cleaned using mild cleaning agents that are compatible with the product's materials (non-alkaline, non-soap).

Do not allow any cleaning agent to enter the interior of the product during cleaning. It is normally not necessary to clean the interior of the product.

The interior of the product must be cleaned if incorrect or contaminated lubricant is accidentally filled into the product.

Contact the SKF Service department if this occurs.

IMPORTANT NOTE

Dismantling of the product or individual parts thereof within the statutory warranty period is prohibited and voids any claims.

IMPORTANT NOTE

Only original SKF spare parts may be used. Unauthorized alterations to products and the use of non-original spare parts and accessories are prohibited and nullify the statutory warranty.

SKF shall not be held liable for damages resulting from improperly performed assembly, maintenance, or repair work on the product.

IMPORTANT NOTE

Use only clean lubricant. The purity of the lubricants used is the decisive factor in the service life of the progressive meter-ing device and the lubricated machinery elements.

EN

11. Malfunctions, causes, and remedies

The following tables provide an overview of possible malfunctions and their causes. Contact the SKF Service department if you cannot remedy the malfunction.

IMPORTANT NOTE

EN

Dismantling of the progressive metering device is prohibited and voids any claims. Defective progressive metering devices must be replaced. Only SKF Service is capable of repairing them.

IMPORTANT NOTE

Only original SKF spare parts may be used. Unauthorized alterations to products and the use of non-original spare parts and accessories are prohibited.

WARNING

System pressure

Lubrication systems are pressurized during operation. Lubrication systems must therefore be depressurized before starting assembly, maintenance or repair work, or any system modifications or system repairs.

IMPORTANT NOTE

Outlets of a progressive metering device that are not needed must not be closed because this will cause the progressive metering device to block. Unneeded outlets must be consolidated with a neighboring outlet or connected to the pump via the return line.

11.1 Prior to beginning troubleshooting

The only condition that can cause a properly configured progressive metering device to jam/clog is the entry of contaminants into the lubricant lines or an insufficient quantity of lubricant.

Preventing contaminants from entering during work or when refilling the lubricant reservoir thus first and foremost requires a clean work environment.

The progressive metering device outlet is typically equipped with a fitting with check valve. Do not replace this with another connector because this may cause problems in the progressive metering device's operation. Each outlet of the progressive metering device can supply each bearing/each secondary metering device with a different, precalculated quantity of grease. Therefore, the position of each lubricant line to the progressive metering device outlet should be noted prior to starting work.

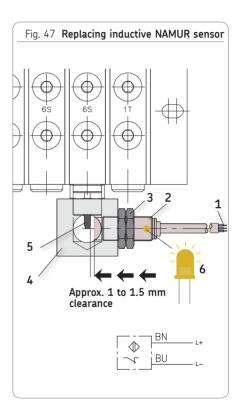
11

11.2 Progressive metering device and system malfunctions

Malfunction	Cause	Remedy
No lubricant at lubrication points	 Main metering device or secondary metering device is defective Can be detected if no grease can be pressed through the distributor after removing all union nuts or fittings at the outlets. Check the flow in the main metering device and secondary metering device Sequentially remove union nuts or fittings at the outlets; check valves may be built into the outlet fittings. Trigger intermediate lubrication. The progressive metering device is functioning properly if significant grease discharge is seen at all outlets. Replace the progressive metering device if grease does not discharge at all outlets. 	 Replace the progressive metering device Loosen all fittings, mark lines, secure against outside influences Install a new progressive metering device Install lubrication lines in the correct or- der as marked previously Only use original SKF spare parts! Perform start-up and functional inspection.
	o Defective or blocked secondary feed line	• Detach feed line, identify cause of blockage, replace secondary feed line if necessary

Malfunction	Cause	Remedy
Insufficient lubricant discharge	o Air cushion in main metering de- vice or secondary metering device	 Perform venting on the secondary metering device discharging too little lubricant. Grease progressive system - see Chapter 7.2.1 Oil progressive system - see Chapter 7.2.2
at lubrication points	 o Damaged lubricant line, detect- able only by visual inspection and significant lubricant discharge. o Visual inspection o Check the lubricant supply 	 Replace the lubricant line Use only grease-filled SKF original spare lines on grease progressive systems. Perform start-up and functional inspection. Visual inspection for mechanical damage Pinching and sharp bends are blocking the grease flow Check grease supply in the lubricant reservoir, refill if necessary. Start-up, functional inspection Trigger interim lubrication.
	o Defective lubrication pointo Defective bearingo Bearing bush twisted	 Check bearing for mechanical damage or contamination. Check bearing for proper function (move the machine and check for. bearing noise). Use a high-pressure grease gun to make the bearing move freely. If this is not possible, the bearing must be repaired or replaced by technical personnel Install all lines and fittings that were removed during troubleshooting. Perform start-up and functional inspection.

Malfunction	Cause	Remedy
System malfunction	o Piston detector on main metering device has indicated that the system is not working.	 Loosen both lubrication lines on the last metering section of the main metering device, switch on the lubrication system, and check whether lubricant discharges without bubbles. If lubricant discharges without bubbles, tighten both lubrication lines and repeat the procedure on all secondary metering devices, starting from the closest progressive metering device. Vent the possibly defective progressive metering device again; replace in the event of reoccurrence. If all progressive metering devices function properly, check the electrical connection of the piston detector and the piston detector itself for proper function.
	o Pressure relief valve does not close	 Clean or replace pressure relief valve. Only use original SKF spare parts.
No pressure build up in the main line	o Unsuitable lubricant (see technical data)	 Remove lubricant from entire system and dispose of lubricant in the proper manner; fill system with suitable lubricant
	o Fill level too low	• Top up lubricant
	o Pump element is defective	 Inspect pump element and replace if necessary


12. Repairs

EN

12.1 Replacing inductive NAMUR sensor

- -see Figure 44
- Check that the new inductive NAMUR sensor (2) matches the documentation and the intended use.
- Take safety measures as specified in the warning at the beginning of this Chapter.
- Disconnect cable end (1) of the defective NAMUR sensor (2) from the customer's terminal strip.
- Loosen locknuts (2x 3) from the sensor holder (4).
- Unscrew defective NAMUR sensor (2) from the sensor holder (4).
- Apply new NAMUR sensor (2) to the sensor holder (4) and screw in gently.
- Disconnect cable end (1) of the sensor (2) on the customer's terminal strip.

- Apply pressure to progressive metering device until the plunger rod (5) has extended.
- Turn on computer's power supply then screw the NAMUR sensor (2) into the sensor holder (4) until the control diode (6) of the sensor (2) lights up (clearance to plunger rod approx. 1-1.5 mm)
- Secure NAMUR sensor (2) to the sensor holder (4) using both locknuts (3).

13. Shutdown and disposal

13.1 Temporary shutdown

The described product can be temporarily shut down by disconnecting the hydraulic supply connections. Observe the instructions in the chapter "Assembly" while doing so.

If the product is to be shut down for an extended period of time, follow the instructions in chapter "Transport, delivery, and storage."

To recommission the product, follow the instructions in the Chapter "Assembly."

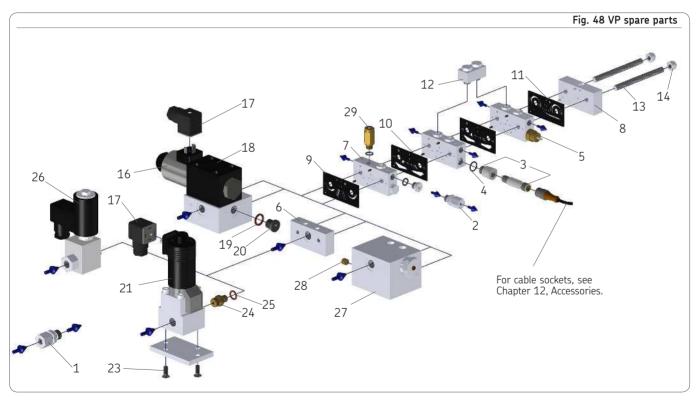
Shutdown and disposal 13.2

If the product will be permanently shut down, the local regulations and laws regarding the disposal of contaminated equipment must he observed

The product can also be returned to SKF Lubrication Systems Germany GmbH for disposal, in which case the customer is responsible for reimbursing the costs incurred. The parts are recyclable.

EN

IMPORTANT NOTE


Lubricants can contaminate soil and waterways. Lubricants must be used and disposed of properly. Observe the local regulations and laws regarding the disposal of lubricants.

- 97 -

14. Spare parts

EN

14.1 Spare parts - VPG (inch thread) and VPM (metric thread)

Inlet fittings - VPG (inch thread) and VPM (metric thread)

ltom	Designation	Group	VPG	VPM
ltem	Designation	[LL] [L] [S]	Order No.	Order No.
	Straight connector for pipe Ø 6 mm 1)	L	-	406-413
	Straight connector for pipe \emptyset 6 mm ¹)	S	406-413W	-
	Straight connector for pipe Ø 8 mm 1)	L	408-403W	-
	Straight connector for pipe Ø 8 mm ¹)	S	-	408-413
	Straight connector for pipe Ø 10 mm ¹)	L	410-403W	410-403
	Straight connector for pipe Ø 12 mm ¹)	L	412-423W	412-423
	Straight connector, design EO2, for pipe Ø 6 mm		471-006-161	471-006-351
	Straight connector, design EO2, for pipe Ø 8 mm		471-008-161	471-008-351
	Straight connector, design EO2, for pipe Ø 10 mm		471-010-161	471-010-351
1	Straight connector, design EO2, for pipe Ø 12 mm		471-012-161	-
1	Quick disconnect coupling, Ø 6 mm		406-054-VS	-
	Elbow connector according to DIN2353, for pipe Ø 8 mm, tapered 1)	L	408-405W	
	Elbow connector according to DIN2353, for pipe \emptyset 10 mm, tapered 1)	L	410-405W	410-405
	Banjo fitting for pipe Ø 6 mm ¹)	S	445-516-061	-
	Banjo fitting for pipe Ø 8 mm 1)	L	445-516-081	-
	Banjo fitting for pipe Ø 10 mm ¹)	L	445-516-101	445-535-101
	1) Solderless screw connection with cutting ring according to DIN 2353 LL series = very light series, L series = light series, S series = heavy ser			

Outlet fittings - VPG (inch thread) and VPM (metric thread)

n, tapered ¹)	[LL] [L] [S]	Order No.	Order No.	
	LL	-		
1			404-403	
	LL	404-403W	-	
n, tapered ¹)	LL	-	406-423	
¹)	L	406-403W	406-403	
n, tapered ¹	LL	408-423W	441-008-511	
m, tapered ¹	L	410-443W	-	
pipe Ø 4 mm ¹)		471-004-191	471-004-311	
pipe Ø 6 mm ¹)		471-006-192	471-006-311	
Ø 4 mm		404-040-VS	404-006-VS	
Ø 4 mm tapered		-	451-004-518-VS	
Ø 6 mm		456-004-VS	406-004-VS	
Ø 6 mm tapered		406-423W-VS	451-006-518-VS	
1) Solderless screw connection with cutting ring according to DIN 2353				
(0 6 mm tapered utting ring according to DIN	0 6 mm tapered	Ø 6 mm tapered 406-423W-VS utting ring according to DIN 2353	

	Designation	Group	VPG	VPM
ltem		[LL] [L] [S]	Order No.	Order No.
	Outlet fitting for pipe Ø 4 mm, with check valve		VPG-RV	VPM-RV4
	Outlet fitting for pipe Ø 6 mm, with check valve		VPG-RV6	VPM-RV6
	Outlet fitting for pipe Ø 8 mm, with check valve		VPG-RV8	VPM-RV8
	Outlet fitting for pipe Ø 10 mm, with check valve		-	VPM-RV10
	Banjo fitting for pipe Ø 4 mm	LL	445-519-041	-
	Banjo fitting for pipe Ø 6 mm	L	445-519-061	445-531-061
2	Banjo fitting for pipe Ø 6 mm	LL		445-531-062
	Quick disconnect coupling for pipe Ø 4 mm, with banjo fitting		504-108-VS	504-102-VS
	Quick disconnect coupling for pipe Ø 4 mm, tapered, with banjo fitting		-	455-531-048-VS
	Quick disconnect coupling for pipe Ø 6 mm, with banjo fitting		506-108-VS	506-140-VS
	Quick disconnect coupling for pipe Ø 6 mm, tapered, with banjo fitting			455-531-068-VS
	LL series = very light series, L series = light series, S series = heavy series	i		

Outlet fittings - VPG (inch thread) and VPM (metric thread)

Monitoring - VPG (inch thread) and VPM (metric thread)

Item Designation	Designation	VPG	VPM	
	Order No.	Order No.		
2	Bipolar piston detector kit, 2-pin ¹⁾	24-0159-6021		
3	Universal piston detector kit, 3-pin ¹⁾	24-0159-6025		
4	Associated sealing ring	WVN532-12×1.5		
1) A kit i	1) A kit includes the respective sensor with adapter and O-ring.			

		VPG	VPM
ltem	Designation	Order No.	Order No.
	Progressive metering device section 2T with cycle indicator right	VPG-K-2T-ZY-R	VPM-K-2T-ZY-R
	Progressive metering device section 3T with cycle indicator right	VPG-K-3T-ZY-R	VPM-K-3T-ZY-R
	Progressive metering device section 4T with cycle indicator right	VPG-K-4T-ZY-R	VPM-K-4T-ZY-R
	Progressive metering device section 5T with cycle indicator right	VPG-K-5T-ZY-R	VPM-K-5T-ZY-R
	Progressive metering device section 6T with cycle indicator right	VPG-K-6T-ZY-R	VPM-K-6T-ZY-R
	Progressive metering device section 2T with cycle indicator left	VPG-K-2T-ZY-L	VPM-K-2T-ZY-L
	Progressive metering device section 3T with cycle indicator left	VPG-K-3T-ZY-L	VPM-K-3T-ZY-L
	Progressive metering device section 4T with cycle indicator left	VPG-K-4T-ZY-L	VPM-K-4T-ZY-L
	Progressive metering device section 5T with cycle indicator left	VPG-K-5T-ZY-L	VPM-K-5T-ZY-L
	Progressive metering device section 6T with cycle indicator left	VPG-K-6T-ZY-L	VPM-K-6T-ZY-L
5	Progressive metering device section 2S with cycle indicator right	VPG-K-2S-ZY-R	VPM-K-2S-ZY-R
	Progressive metering device section 3S with cycle indicator right	VPG-K-3S-ZY-R	VPM-K-3S-ZY-R
	Progressive metering device section 4S with cycle indicator right	VPG-K-4S-ZY-R	VPM-K-4S-ZY-R
	Progressive metering device section 5S with cycle indicator right	VPG-K-5S-ZY-R	VPM-K-5S-ZY-R
	Progressive metering device section 6S with cycle indicator right	VPG-K-6S-ZY-R	VPM-K-6S-ZY-R
	Progressive metering device section 2S with cycle indicator left	VPG-K-2S-ZY-L	VPM-K-2S-ZY-L
	Progressive metering device section 3S with cycle indicator left	VPG-K-3S-ZY-L	VPM-K-3S-ZY-L
	Progressive metering device section 4S with cycle indicator left	VPG-K-4S-ZY-L	VPM-K-4S-ZY-L
	Progressive metering device section 5S with cycle indicator left	VPG-K-5S-ZY-L	VPM-K-5S-ZY-L
	Progressive metering device section 6S with cycle indicator left	VPG-K-6S-ZY-L	VPM-K-6S-ZY-L

Progressive metering device sections - VPG (inch thread) and VPM (metric thread)

	Designation	VPG	VPM
ltem		Order No.	Order No.
6	Inlet section	VPG-E	VPM-E
	Progressive metering device section 1T	VPG-K-1T-PS	VPM-K-1T-PS
	Progressive metering device section 2T	VPG-K-2T-PS	VPM-K-2T-PS
	Progressive metering device section 3T	VPG-K-3T-PS	VPM-K-3T-PS
	Progressive metering device section 4T	VPG-K-4T-PS	VPM-K-4T-PS
	Progressive metering device section 5T	VPG-K-5T-PS	VPM-K-5T-PS
	Progressive metering device section 6T	VPG-K-6T-PS	VPM-K-6T-PS
7	Progressive metering device section 1S	VPG-K-1S-PS	VPM-K-1S-PS
	Progressive metering device section 2S	VPG-K-2S-PS	VPM-K-2S-PS
	Progressive metering device section 3S	VPG-K-3S-PS	VPM-K-3S-PS
	Progressive metering device section 4S	VPG-K-4S-PS	VPM-K-4S-PS
	Progressive metering device section 5S	VPG-K-5S-PS	VPM-K-5S-PS
	Progressive metering device section 6S	VPG-K-6S-PS	VPM-K-6S-PS
	Plug for twin section	917-006-101	917-006-101

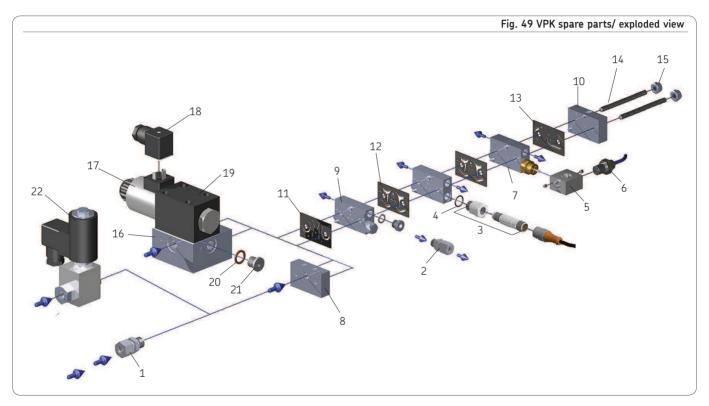
- 103 -

Progressive metering device sections - VPG (inch thread) and VPM (metric thread)

Progressive metering device components - VPG (inch thread) and VPM (metric thread)

ltem	Designation	VPKG	VPKM	
Item	Designation	Order No.	Order No.	
8	Outlet section		VPM-A	
9	Inlet plate		VP2.07	
10	Intermediate plate		VP2.08	
11	End plate		VP2.09	
12	Connection fitting (crossporting bars, design complete with banjo bolt and sealing rings)			
	Tie-rod for 3 progressive metering device sections, length 98+0.5 mm		VP.173	
	Tie-rod for 4 progressive metering device sections, length 118+0.5 mm	VP.174		
	Tie-rod for 5 progressive metering device sections, length 138+0.5 mm	VP.175		
42	Tie-rod for 6 progressive metering device sections, length 158+0.5 mm	VP.176		
13	Tie-rod for 7 progressive metering device sections, length 178+0.5 mm	VP.177		
	Tie-rod for 8 progressive metering device sections, length 200+0.5 mm	VP.178		
	Tie-rod for 9 progressive metering device sections, length 2020+0.5 mm	VP.179		
	Tie-rod for 10 progressive metering device sections, length 240+0.5 mm	VP.180		
14	Hexagon nut		DIN985-M8-6	

Progressive metering device components - VPG (inch thread) and VPM (metric thread)	ead)
--	------


11		VPG		VPM
ltem	Designation	Order No.		Order No.
15	Starter plate for 4/2 and 3/2 directional solenoid valve	44-0711-2265		44-0711-2266
16	4/2 directional solenoid valve, 24 V DC		161-140	0-050+924
17	Coupler socket according to DIN EN175301-803A		179-9	990-033
18	Fixing bolt for directional control valve		DIN912-	M5×45-8.8
19	Sealing ring	508-108		DIN7603-A14×18-AL
20	Plug screw	DIN908-R1-4-5.8		DIN908-M14×1.5-5.8
21	2/2 directional solenoid valve for grease, 24 V DC	161-110-031+924		
22	Adapter plate	44-1503-2366		44-1503-2366
23	Screws for adapter plate	DIN936-M6×16-4.8		
24	Inter-screw connection	853-750-024		402-116-351
25	Sealing ring	-		DIN7603-A14×18-CU
26	2/2 directional solenoid valve for oil, 24 V DC, incl. rectangular connector	VPG-VEN+924		VPM-VEN+924
27	Starter plate with flow limiter	24-1883-2272		24-1883-2273

Plug-in nozzle table

_		1		1
ltem	Nominal volumetric flow [l/min]	Nozzle index	Nozzle diameter [mm]	Plug-in nozzle Order No.
	0.08	050	0.50	24-0455-2574
	0.12	055	0.55	24-0455-2575
	0.15	060	0.60	24-0455-2576
	0.21	065	0.65	24-0455-2577
	0.25	070	0.70	24-0455-2578
	0.29	075	0.75	24-0455-2579
	0.35	080	0.80	24-0455-2580
	0.41	085	0.85	24-0455-2581
28	0.47	090	0.90	24-0455-2582
	0.56	095	0.95	24-0455-2583
	0.65	100	1.00	24-0455-2584
	0.73	105	1.05	24-0455-2585
	0.79	110	1.10	24-0455-2586
	0.88	115	1.15	24-0455-2587
	0.98	120	1.20	24-0455-2588
	1.09	125	1.25	24-0455-2589

Overpressure indicator

ltem	Opening pressure [bar]	VPG Order No.	VPM Order No.
	50	VPG-UE50-3	VPM-UE50-3
	100	VPG-UE100-3	VPM-UE100-3
29	150	VPG-UE150-3	VPM-UE150-3
	200	VPG-UE200-3	VPM-UE200-3

Inlet fittings - VPKG (inch thread) and VPKM (metric thread)

		Group	VPKG	VPKM
ltem	Designation	[LL] [L] [S]	Order No.	Order No.
	Straight connector according to DIN2353, for pipe \emptyset 6 mm ¹)	L	406-403W	406-403
	Straight connector according to DIN2353, for pipe Ø 6 mm, tapered 1)	LL	-	406-423
	Straight connector according to DIN2353, for pipe Ø 8 mm, tapered ¹)	LL	408-423W	441-008-511
	Straight connector according to DIN2353, for pipe Ø 10 mm, tapered 1)	L	410-443W	-
	Straight connector, design EO2, for pipe Ø 6 mm		471-006-192	471-006-311
	Straight quick disconnect coupling, for pipe Ø 6 mm		406-423W-VS	406-004-VS
	Straight quick disconnect coupling, for pipe Ø 6 mm, tapered		406-423W	451-006-518-VS
	Elbow connector according to DIN2353, for pipe Ø 6 mm, tapered 1)	L	406-405W	406-405
1	Elbow connector according to DIN2353, for pipe Ø 6 mm, tapered ¹)	LL	-	406-425
	Elbow connector according to DIN2353, for pipe \emptyset 8 mm, tapered ¹)	LL	408-425W	408-425
	Elbow connector for quick disconnect coupling for pipe Ø 6 mm, tapered ¹)		506-511-VS	506-510-VS
	Banjo fitting according to DIN2353, for pipe Ø 6 mm ¹)	L	445-519-061	445-531-061
	Banjo fitting according to DIN2353, for pipe Ø 6 mm ¹)	LL	-	445-531-062
	Banjo fitting for quick disconnect coupling, for pipe Ø 6 mm		506-108-VS	506-140-VS
	Banjo fitting for quick disconnect coupling, for pipe Ø 6 mm, tapered		-	455-531-068-VS
	1) Solderless screw connection with cutting ring according to DIN 2353 LL series = very light series, L series = light series, S series = heavy series			

Outlet fittings - VPKG (inch thread) and VPKM (metric thread)

ltem	Designation	Group	VPKG	VPKM
item	Designation	[LL] [L] [S]	Order No.	Order No.
	Straight connector for pipe Ø 4 mm, tapered ¹⁾	L	-	404-403
	Straight connector for pipe Ø 4 mm ¹⁾	LL	404-403W	-
	Straight connector for pipe Ø 6 mm, tapered $^{1)}$	LL	-	406-423
	Straight connector for pipe \emptyset 6 mm ¹⁾	L	406-403W	406-403
	Straight connector for pipe \emptyset 8 mm, tapered ¹⁾	LL	408-423W	441-008-511
	Straight connector for pipe Ø 10 mm, tapered ¹⁾	L	410-443W	-
	Straight connector, design EO2, for pipe Ø 4 mm ¹⁾		471-004-191	471-004-311
2	Straight connector, design EO2, for pipe Ø 6 mm ¹⁾		471-006-192	471-006-311
	Straight quick disconnect coupling for pipe Ø 4 mm		404-040-VS	404-006-VS
	Straight quick disconnect coupling for pipe Ø 4 mm, tapered ¹⁾		-	451-004-518-VS
	Straight quick disconnect coupling for pipe Ø 6 mm		456-004-VS	406-004-VS
	Straight quick disconnect coupling for pipe Ø 6 mm, tapered $^{1)}$		406-423W-VS	451-006-518-VS
	1) Solderless screw connection with cutting ring according to DIN 235 LL series = very light series, L series = light series, S series = heavy se			

Outlet fittings - VPKG (inch thread) and VPKM (metric thread)

	Designation	Group	VPKG	VPKM
ltem	em Designation		Order No.	Order No.
	Outlet fitting for pipe Ø 6 mm, with check valve		VPKG-RV6	VPKM-RV-S4
	Quick disconnect coupling fitting for pipe Ø 6 mm, with check valve		-	VPKM-RV-VS
	Banjo fitting for pipe Ø 4 mm ¹⁾	LL	445-519-041	-
	Banjo fitting for pipe Ø 6 mm $^{1)}$	L	445-519-061	445-531-061
	Banjo fitting for pipe Ø 6 mm ¹⁾	LL	-	445-531-062
2	Quick disconnect coupling for pipe Ø 4 mm, with banjo fitting		504-108-VS	504-102-VS
	Quick disconnect coupling for pipe Ø 4 mm, tapered, with banjo fitting		-	455-531-048-VS
	Quick disconnect coupling for pipe Ø 6 mm, with banjo fitting		506-108-VS	506-140-VS
	Quick disconnect coupling for pipe Ø 6 mm, tapered, with banjo fitting		-	455-531-068-VS
	1) Solderless screw connection with cutting ring according to DIN 2353 LL series = very light series, L series = light series, S series = heavy series			

Monitoring - VPKG (inch thread) and VPKM (metric thread)

ltom	Designation	VPKG	VPKM	
ltem	Designation	Order No.	Order No.	
3	Bipolar piston detector kit, 2-pin ²⁾	24-0)159-6022	
3	Universal piston detector kit, 3-pin ²⁾	24-0	0159-6024	
4	Associated sealing ring	96-	9120-0062	
5	Proximity switch housing	V	PKM.13	
5	Screws for housing fitting	DIN91	4-M4×6-45H	
6	NAMUR proximity switch	177	-300-075	
²⁾ A kit ir	cludes the respective sensor with adapter and 0-ring.			

Progressive metering device components – VPKG (inch thread) and VPKM (metric thread)

		VPKG	<u></u>
ltem	Designation	Order No.	Order No.
	Progressive metering device section 2T with cycle indicator right	VPKG-K-2T-ZY-R	VPKM-K-2T-ZY-R
	Progressive metering device section 3T with cycle indicator right	VPKG-K-3T-ZY-R	VPKM-K-3T-ZY-R
	Progressive metering device section 2T with cycle indicator left	VPKG-K-2T-ZY-L	VPKM-K-2T-ZY-L
7	Progressive metering device section 3T with cycle indicator left	VPKG-K-3T-ZY-L	VPKM-K-3T-ZY-L
/	Progressive metering device section 2S with cycle indicator right	VPKG-K-2S-ZY-R	VPKM-K-2S-ZY-R
	Progressive metering device section 3S with cycle indicator right	VPKG-K-3S-ZY-R	VPKM-K-3S-ZY-R
	Progressive metering device section 2S with cycle indicator left	VPKG-K-2S-ZY-L	VPKM-K-2S-ZY-L
	Progressive metering device section 3S with cycle indicator left	VPKG-K-3S-ZY-L	VPKM-K-3S-ZY-L
8	Inlet section	VPKG-E	VPKM-E
	Progressive metering device section 05T	VPKG-K-05T-PS	VPKM-K-05T-PS
	Progressive metering device section 1T	VPKG-K-1T-PS	VPKM-K-1T-PS
	Progressive metering device section 2T	VPKG-K-2T-PS	VPKM-K-2T-PS
	Progressive metering device section 3T	VPKG-K-3T-PS	VPKM-K-3T-PS
9	Progressive metering device section 05S	VPKG-K-05S-PS	VPKM-K-05S-PS
	Progressive metering device section 1S	VPKG-K-1S-PS	VPKM-K-1S-PS
	Progressive metering device section 2S	VPKG-K-2S-PS	VPKM-K-2S-PS
	Progressive metering device section 3S	PKG-K-3S-PS	VPKM-K-3S-PS
	Plug for twin section	917-006-101	917-006-101

Progressive metering device components – VPKG (inch thread) and VPKM (metric thread)

ltem	Designation	VPKG Order No.		VPKM Order No.
10	Outlet section		VPK	(M-A
11	Inlet plate		VPK	M.07
12	Intermediate plate		VPK	M.08
13	End plate		VPK	M.09
	Tie-rod for 3 progressive metering device sections, length 80±0.3 mm		VPK	M.93
	Tie-rod for 4 progressive metering device sections, length 96.5±0.3 mm		VPKM.94	
	Tie-rod for 5 progressive metering device sections, length 113.5±0.3 mm	VPKM.95		M.95
14	Tie-rod for 6 progressive metering device sections, length 128±0.5 mm		VPK	M.96
14	Tie-rod for 7 progressive metering device sections, length 144±0.5 mm		VPK	M.97
	Tie-rod for 8 progressive metering device sections, length 162⁺0.5 mm		VPK	M.98
	Tie-rod for 9 progressive metering device sections, length 178±0.5 mm	VPKM.99		
	Tie-rod for 10 progressive metering device sections, length $194\pm0.5~\text{mm}$		VPK	м.100
15	Hexagon nut		DIN98	5-M6-8

EN

Attachments – VPKG (inch thread) and VPKM (metric thread)

ltem	Designation	VPKG Order No.	VPKM Order No.
16	Starter plate for 4/2 and 3/2 directional solenoid valve	44-0711-2263	44-0711-2264
47	4/2 directional solenoid valve, 24 V DC, without items.20, 21	161-140-050+924	161-140-050+924
17	3/2 directional solenoid valve, 24 V DC, without items.20, 21	161-140-050+924	161-140-050+924
18	Cable socket with protection circuit, 3m PUR cable and LED	179-990-416	179-990-416
19	Fixing bolt for directional control valve	DIN912-M5×45-8.8	DIN912-M5×45-8.8
20	Sealing ring	504-019	504-019
21	Plug screw	95-0018-0908	DIN908-M10×1-5.8
22	2/2 directional solenoid valve, 24 V DC	VPKG-VEN+924	-

14.3 Spare parts – VPB

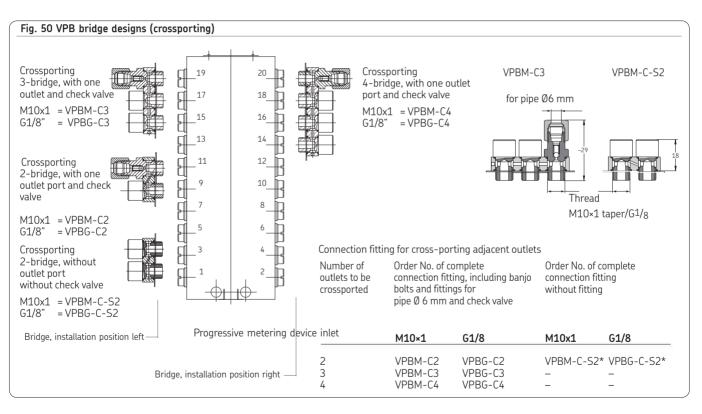
Inlet fittings - VPBG	(inch thread) and VPBM	(metric thread)
-----------------------	------------------------	-----------------

lt	Designation	Group	VPBG	VPBM
ltem	Item Designation [[Order No.	Order No.
	Straight connector according to DIN2353, for pipe \emptyset 6 mm ¹)	L	406-403W	-
	Straight connector according to DIN2353, for pipe Ø 6 mm, tapered 1)	LL	-	406-423
	Straight connector according to DIN2353, for pipe Ø 8 mm, tapered 1)	LL	408-423W	441-008-511
1	Straight connector according to DIN2353, for pipe Ø 10 mm, tapered ¹)	L	410-443W	410-443
	Straight quick disconnect coupling for pipe Ø 6 mm		406-423-VS	451-006-518-VS
	1) Solderless screw connection with cutting ring according to DIN 2353			

la e con	Designation	Group	VPBG (G1/8)	VPBM (M10x1)
ltem	Designation	[LL] [L] [S]	Order No.	Order No.
	Straight connector for pipe Ø 4 mm, tapered 1)	L	-	404-403
	Straight connector for pipe Ø 4 mm 1)	LL	404-403W	-
	Straight connector for pipe \emptyset 6 mm ¹)	L	406-403W	406-403
	Straight connector for pipe Ø 8 mm, tapered 1)	LL	408-423W	441-008-511
	Straight connector for pipe Ø 10 mm, tapered ¹)	L	410-443W	-
2	Straight quick disconnect coupling for pipe Ø 4 mm, tapered		404-040-VS	451-004-518-VS
	Straight quick disconnect coupling for pipe Ø 6 mm, tapered		406-423W-VS	451-006-518-VS
	Plug screw			466-431-001
			466-419-001	
	1) Solderless screw connection with cutting ring according to DIN 235.	3		

Outlet fittings - VPBG (inch thread) and VPBM (metric thread)

Monitoring


ltom	Designation	VPB
ltem	Designation	Order No.
	Bipolar piston detector kit, 2-pin 1)	24-0159-6028
4	Universal piston detector kit, 3-pin 1)	24-0159-6023
	Associated sealing ring	WVN501-10x1
1) A kit i	ncludes the respective sensor with adapter and O-ring.	

Attachments

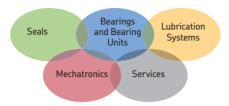
1	Designation	VPB
ltem	Designation	Order No.
17	2/2 directional solenoid valve, 24 V DC,	161-110-031+924
18	Cable socket with protection circuit, 3m PUR cable and LED	24-1882-2019
19	Interscrew connection G1/4 to M10x1	44-0159-2282
20	Sealing ring	504-019
	Plug screw	DIN908-M10×1-5.8

15. Accessories

15.1 VPB bridge designs (crossporting)

15.2 VPB check valves

Check valves						
	Tube		Opening	Pressure, ma	х.	for pipe Ø
Order No.	ød1	G	pressure [bar]	[bar]	Illus.	d1
for direct screwing VPKG-RV VPKM-RV-S4 for quick disconne	6 6	essive metering devi R1/8 taper. M10×1 taper.	ce outlet. 3 2	100 100	1	
VPKG-RV4-VS VPKG-RV-VS VPKM-RV-VS VPKM-RV-VS	4 6 6	R1/8 taper. G1/8 M10×1 taper.	3 3 3	300 300 300	2	d1 d1


EN

15.3 Cable sockets

				Fig. 52 Cable sockets
Designation		Order No.	Weight [g]	Illustration
Cable sockets M12x1, 4-pin design, without LED				
A	Circular connector, straight , without cable diameter 4–6 mm, 4-pin, max. 0.75 mm ²	179-990-371	15	A B C D
В	Circular connector, straight, with 5-m integrally extruded cable, 4-pin, 4×0.25 mm ²	179-990-600	178	1 🖞 🖤 🌱
В	Circular connector, straight, with 10-m integrally extruded cable, 4-pin, 4×0.25 mm ²	179-990-603	325	
С	Circular connector, angled, without cable diameter 4–6 mm, 4-pin, max. 0.75 mm ²	179-990-372	16	For other cable sockets and technical data, please refer to brochure No. 1-1730-EN, "Electrical Plug and Socket Connectors."
D	Circular connector, angled , with 5-m integrally extruded cable, 4×0.25 mm ²	179-990-601	182	
E	Rectangular quick disconnect coupling without cable, according to DIN EN175301-803-A, poles 3+PE, maximum conductor cross-section 4x1.5 mm ²	179-990-033	_	Rectangular quick disconnect coupling
F	Rectangular quick disconnect coupling wit 3 m cable, according to DIN EN175301-803-A, poles 2+PE, maximum conductor cross-section 3x0.75 mm ² with polarity reversal protection and LED status display	179-990-416	M3 28	

Fig. FO Cable sealusts

15

951-230-008-EN March 2019 Version 04

SKF Lubrication Systems Germany GmbH Hockenheim Plant 2. Industriestraße 4 DE - 68766 Hockenheim Tel. +49 (0)62 05 27-0 Fax +49 (0)62 05 27-101 www.skf.com/lubrication

